MISSISSIPPI PEANUT

VARIETY TRIALS, 2018

Information Bulletin 535 • January 2019

MISSISSIPPI'S OFFICIAL VARIETY TRIALS

NOTICE TO USER

This Mississippi Agricultural and Forestry Experiment Station information bulletin is a summary of research conducted at locations shown on the map on the second page. It is intended for colleagues, cooperators, and sponsors. The interpretation of data presented in this report may change after additional experimentation. Information included is not to be construed as a recommendation for use or as an endorsement of a specific product by Mississippi State University or the Mississippi Agricultural and Forestry Experiment Station.

This report contains data generated as part of the Mississippi Agricultural and Forestry Experiment Station research program. Trade names of commercial products used in this report are included only for clarity and understanding.

Mississippi Peanut Variety Trials, 2018

MAFES Official Variety Trial Contributors

Brad Burgess

Director, Research Support/Variety Testing Mississippi State University

Jake Bullard

Assistant Director, Variety Testing Mississippi State University

Mike Ely

Research Associate I
Coastal Research and Extension Center

Jeff Gore

Associate Extension/Research Professor Delta Research and Extension Center

Alan Henn

Extension Professor MSU Biochemistry, Molecular Biology, Entomology, and Plant Pathology

Bisoondat Macoon

Associate Professor and Interim Facilities Coordinator Brown Loam Branch Experiment Station

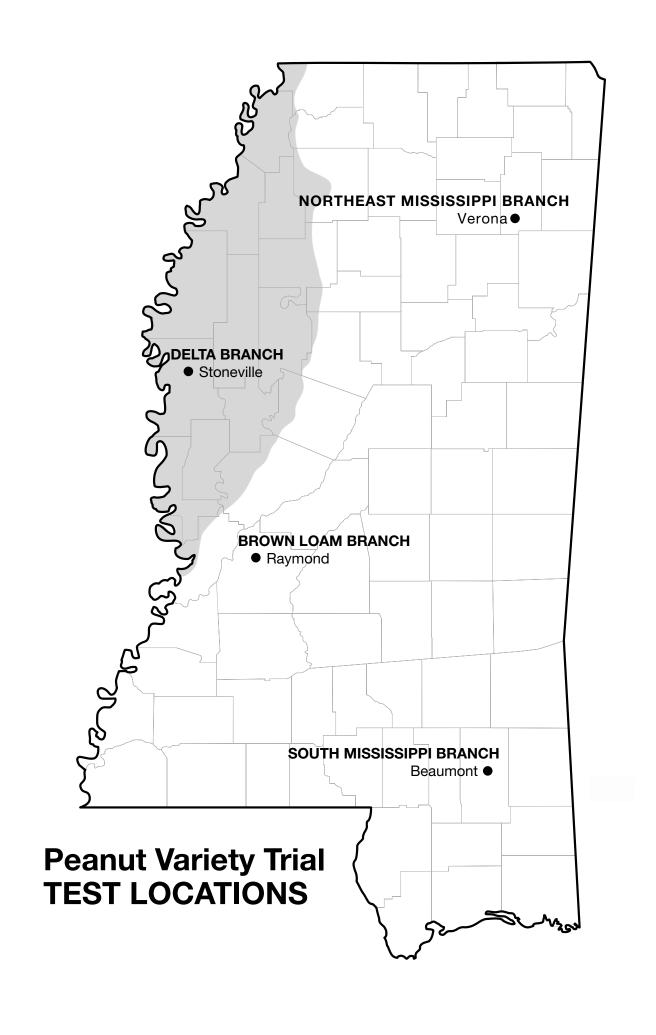
Jason McQuirter

Research Associate II Variety Testing Mississippi State University

Dennis Reginelli

Regional Extension Specialist II Extension Northeast Region Mississippi State University

Brendan Zurweller


Assistant Extension/Research Professor Peanut Specialist Mississippi State University

For more information, contact Burgess at (662) 325-2390; email, Brad.Burgess@msstate.edu. Recognition is given to research technician Jason Hillhouse of the Variety Trial Program for his assistance in packaging, planting, harvesting, and recording plot data. This publication was prepared by Dixie Albright, office associate for MAFES Research Support Units.

This document was approved for publication as Information Bulletin 535 of the Mississippi Agricultural and Forestry Experiment Station. It was published by the Office of Agricultural Communications, a unit of the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine.

Copyright 2018 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.

Find variety trial information online at mafes.msstate.edu/variety-trials.

Mississippi Peanut Variety Trials, 2018

PROCEDURES

Peanut variety trials were conducted at four locations in Mississippi in 2018. Trials were conducted on Experiment Station land to attempt to represent the different geographic regions of the state in which peanuts are grown. The same commercially available varieties of peanuts were tested at all four locations.

Plots consisted of two 38-inch-wide, 30-foot-long twin rows. Weeds were controlled by cultivation and/or herbicides. Only herbicides currently registered for use on peanuts were used in these studies, with strict adherence to all label instructions.

All varieties were treated with a fungicide seed treatment and an in-furrow insecticide. Experimental design

was a randomized complete block with four replications at each location.

All varieties were planted with a two-row, twin-drill, Monosem plot planter at a uniform seeding rate of six seeds per foot. Fertilizer was applied according to soil test recommendations.

The plots were dug with a KMC two-row peanut digger. After proper drying, the total plot area was harvested with a KMC two-row, pull-type, peanut combine fitted with a bagging attachment. The harvested plots were weighed, moisture was determined, and yields were converted to pounds per acre, following statistical analysis. All plots weights were adjusted to a standard moisture of 13%.

USE OF DATA TABLES AND SUMMARY STATISTICS

The yield potential of a given variety cannot be predicted with complete accuracy. Consequently, replicate plots of all varieties are evaluated for yield, and the yield of a given variety is estimated as the mean of all replicate plots of that variety. Yields vary somewhat from one replicate plot to another, which introduces a certain degree of error to the estimation of yield potential. This natural variation is often responsible for yield differences among different varieties. Thus, even if the mean yields of two varieties are numerically different, they are not necessarily significantly different in terms of yield potential. In other words, the ability to measure yield is not precise enough to determine whether such small differences are observed purely by chance or because of superior performance. The least significant difference (LSD) is an estimate of the smallest difference between two varieties that can be declared to be the result of something other than random variation in a particular trial. Consider the following example for a given trial:

Variety	Yield
Abe	6,000 lb/A
Bill	5,600 lb/A
Charlie	4,900 lb/A
LSD	500 lb/A

The difference between variety Abe and variety Bill is 400 pounds per acre (6,000 - 5,600 = 400). This difference is **smaller** than the LSD (500 pounds per acre). Consequently, it is concluded that variety Abe and variety Bill have the same yield potential since the observed difference occurred purely due to chance. The difference between variety Abe and variety Charlie is 1,100 pounds per acre (6,000 - 4,900 = 1,100), which is **larger**

than the LSD (500 pounds per acre). Therefore, it is concluded that the yield potential of variety Abe is superior to that of variety Charlie since the difference is larger than would be expected purely by chance. The coefficient of variation (CV) is a measure of the relative precision of a given trial and is used to compare the relative precision of different trials. The CV is generally considered to be an estimate of the amount of unexplained variation in a given trial. This unexplained variation could be the result of variation between plots with respect to soil type, fertility, insects, diseases, weather stress, etc. In general, the higher the CV is, the

lower the precision in a given trial. The coefficient of determination (R^2) is another measure of the level of precision in a trial and is also used to compare the relative precision of different trials. The R^2 is a measure of the amount of variation that is explained, or accounted for, in a given trial. For example, an R^2 value of 90% indicates that 90% of the observed variation in the trial has been accounted for, with the remaining 10% being unaccounted. The higher the R^2 value is, the more precise the trial. The R^2 is generally considered to be a better measure of precision than the CV for comparison of different trials.

TERMS USED

SMKRS count per pound (number per pound of sound, whole, mature kernels riding screen) — Number of sound whole mature kernels from 1 pound of the shelled sample riding a 15/64 x 1-inch slotted screen or a 16/64 x ¾-inch slotted screen for Virginia or Runner varieties, respectively.

Pct. SMKRS (sound mature kernels riding screen) — Portion of shelled sample as described above.

Pct. SS (sound splits) — Portion of shelled sample split or broken but not damaged.

Pct. TSMK (total sound mature kernels) — Portion of the shelled sample comprised of sound mature kernels plus sound splits.

Pct. OK (other kernels) — Kernels that pass thorough a 15/64 x 1-inch slotted screen or 16/64 x ¾-inch slotted screen for Virginia or Runner varieties, respectively.

Pct. DK (damaged kernels) — Kernels that are moldy, decayed, or affected by insects or weather conditions, resulting in seed coat or cotyledon discoloration or deterioration.

Pct. TK (total kernels) — All shelled sample kernels including TSMK, OK, and DK.

Pct. Hulls — All hulls from the shelled sample.

Variety	Beau	mont	Rayn	nond	Ston	eville	Ver	ona	Overall a	average
	Yield	TSMK	Yield	TSMK	Yield	TSMK	Yield	TSMK	Yield	TSMK
	Ib/A	%	Ib/A	%	Ib/A	%	Ib/A	%	lb/A	%
Georgia-06G	5964.9	65.4	6437.1	55.1	7738.7	70.7	6299.9	68.8	6610.1	65.0
Georgia-13M	4937.8	66.5	6528.2	66.1	6817.3	67.2	5613.0	73.4	5974.1	68.3
Georgia-14N	4105.2	69.9	5813.0	67.3	5323.0	71.0	4162.0	74.1	4850.8	70.6
Georgia-16HO	5327.8	65.8	6754.5	66.2	7731.3	64.6	6298.2	71.0	6528.0	66.9
TifNV-HI O/L	4737.0	67.4	6527.4	62.4	5494.9	66.9	6078.5	70.3	5709.4	66.8
Algrano QR14	3444.8	64.7	5172.1	59.8	5011.1	63.2	4149.0	66.9	4444.3	63.6
Algrano 914	5038.7	66.4	6255.9	63.2	6391.7	69.2	5701.9	69.6	5847.1	67.1
AU-NPL 17	5542.8	68.5	6705.7	64.7	6729.8	64.8	5635.4	71.2	6153.4	67.3
Georgia-12Y	5010.5	66.7	7101.2	66.4	7337.6	66.0	5597.2	70.4	6261.6	67.4
Georgia-09B	4179.0	68.5	6751.3	65.6	5711.9	67.7	5742.0	71.3	5596.1	68.3
FloRun™'331'	5357.0	68.7	7082.3	61.6	7149.8	66.8	6559.9	71.9	6537.3	67.3
TUFRunner™'511'	4901.0	70.6	6684.4	63.8	7197.4	66.2	6387.5	72.8	6292.6	68.3
TUFRunner™'297'	5357.8	69.9	5903.7	62.5	6837.9	68.8	6114.6	70.7	6053.5	68.0
ASUS 51	4169.4	62.5	_	_	_	_	5494.1	69.2	4831.8	65.9
ASUS 50	3737.2	62.7	_	_	_	_	5333.1	68.7	4535.1	65.7
MRS 35	4105.0	68.0	_	_	_	_	5550.7	72.1	4827.9	70.0
Mean	4744.8		6439.7		6574.8		5669.8		5857.3	67.3
CV	12.5		11.9		9.8		6.4			
LSD (0.05)	1261.4		NS		927.4		517.6			
R ²	74.4		54.7		73.2		84.2			
Error DF	15		36		36		45			

Table 2. Two-year (2017 and 2018) yield summary of peanut variety trials in Mississippi.				
Variety	Raymond	Stoneville	Overall average	
	Ib/A	Ib/A	Ib/A	
Algrano 914	6497	6320	6409	
Algrano QR14	6297	5781	6039	
AU-NPL 17	6984	6332	6658	
TUFRunner™ '297'	6907	6814	6860	
FloRun™'331'	7374	7111	7243	
TUFRunner™ '511'	6925	6850	6887	
Georgia-06G	6826	7128	6977	
Georgia-09B	7322	6201	6762	
Georgia-12Y	7075	6985	7030	
Georgia-13M	6662	6841	6751	
Georgia-14N	5984	5039	5511	
Georgia-16HO	7215	7611	7413	
TifNV-HI O/L	6748	5734	6241	
Overall mean	6832	6519	6676	

Raymond	Stoneville	Overall average
Ib/A	Ib/A	Ib/A
5757	5399	5578
6399	6213	6306
6340	6165	6252
6181	6471	6326
6489	5537	6013
6400	6100	6250
5981	5954	5968
5484	4769	5127
	1b/A 5757 6399 6340 6181 6489 6400 5981	Ib/A Ib/A 5757 5399 6399 6213 6340 6165 6181 6471 6489 5537 6400 6100 5981 5954

MAFES SOUTH MISSISSIPPI BRANCH, BEAUMONT

Crop Summary

Dry weather resulted in less-than-ideal conditions at planting. Soil moisture at planting was marginal for optimum germination and emergence. Rainfall in the days after planting allowed for the majority of plots to emerge to a stand. A supplemental nitrogen application was made due to a mechanical error that occurred in the liquid inoculant applicator during planting. Due to the

issues with in-furrow inoculation and a reduced stand in certain plots, the best two replications were identified, and these two were the ones from which all yield and grade data were taken. Timely rainfall and a favorable growing season allowed for respectable yields, despite the difficulties experienced earlier in the season. The digging and harvest process was completed in a timely manner.

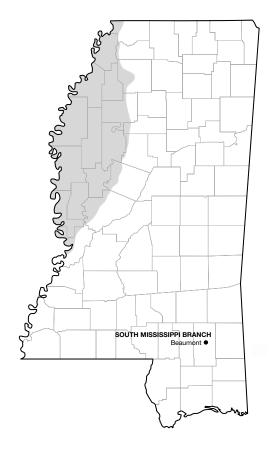
Soil typeMcLaurin fine sandy loam

Soil pH6.0

Soil fertilityP=M, K=M Planting dateMay 14 Digging dateOctober 11 Harvest dateOctober 19

Herbicide Preemergence — Dual II Magnum @ 24 oz/A on May 14; Zidua @ 2 oz/A and Volunteer

(clethodim) @ 16 oz/A on June 27


Postemergence — Pursuit @ 4 oz/A and Section (clethodim) @ 12 oz/A on July 6; Volunteer (clethodim) @ 12 oz/A on July 16; Volunteer (clethodim) @ 12 oz/A on August 8


Fungicide Bravo WeatherStik @ 16 oz/A and Headline @ 12 oz/A on July 16; Bravo WeatherStik @ 16 oz/A on August 8

Fertilizer Preplant — 13-13-13 @ 200 lb/A

Postemergence - Solubor @ 12 oz/A and N @ 30 lb/A (33-0-0) on July 16

Previous crop ...Fallow

	Inches
May	3.70
June	3.46
July	6.57
August	4.53
September	80.8
October	0.79
Total	27.13

Variety	2018 yield	2-year¹ avg.	3-year¹ avg.	TSMK	Seed avg.
	Ib/A	Ib/A	Ib/A	%	no./lb
Georgia-06G	5965	_	_	65.4	588
AU-NPL 17	5543	_	_	68.5	540
TUFRunner™ '297'	5358	_	_	69.9	548
FloRun™'331'	5357	_	_	68.7	653
Georgia-16HO	5328	_	_	65.8	578
Algrano 914	5039	_	_	66.4	608
Georgia-12Y	5010	_	_	66.7	720
Georgia-13M	4938	_	_	66.5	772
TUFRunner™ '511'	4901	_	_	70.6	640
TifNV-HI O/L	4737	_	_	67.4	607
Georgia-09B	4179	_	_	68.5	603
ASUS 51	4169	_	_	62.5	694
Georgia-14N	4105	_	_	69.9	792
MRS 35	4105	_	_	68.0	667
ASUS 50	3737	_	_	62.7	664
Algrano QR14	3445	_	_	64.7	667
Mean	4745			67.0	646
CV	12.5				
LSD (0.05)	1261.4				
R ²	74.4				
Error DF	15				

MAFES BROWN LOAM BRANCH, RAYMOND

Crop Summary

Plots at this location were planted into a stale seedbed that had been prepared the previous fall, after corn. Good soil moisture was present at the time of planting. All plots germinated quickly and emerged to a good stand. This location experienced a period of drought during the first half of summer, but timely rains for the remainder of the growing season allowed sufficient soil moisture for the plants to still have good yield potential. The plots were dug and harvested in a timely manner without any difficulties.

Soil typeLoring silt loam

Soil pH5.7

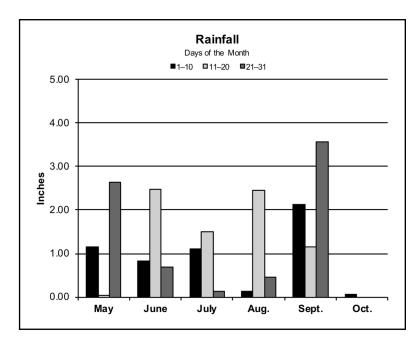
Soil fertility P=M, K=M Planting date May 9 Digging date October 2 Harvest date October 11

Herbicide Preemergence — Dual II Magnum @ 24 oz/A; Valor @ 2 oz/A and Gramoxone @ 32 oz/A

on May 9

Postemergence — Cadre @ 4 oz/A, Volunteer (clethodim) @ 12 oz/A, and Dual II Magnum

@ 16 oz/A on June 15


Fungicide Bravo Weather Stik @ 16 oz/A on June 29; Bravo Weather Stik @ 16 oz/A and Headline

@ 14 oz/A on July 23; Bravo Weather Stik @ 16 oz/A on August 14

Fertilizer Preplant — 0-20-20 @ 150 lb/A; Solubor @ 12 oz/A on June 29

Previous crop ...Corn

	Inches
May	3.81
June	4.00
July	2.73
August	3.03
September	6.82
October	0.05
Total	.20.44

at the MAFES Brown Loam Branch, Raymond.							
Variety	2018 yield	2-year avg.	3-year avg.	TSMK	Seed avg.		
	Ib/A	lb/A	Ib/A	%	no./Ib		
Georgia-12Y	7101	7075	6400	66	724		
FloRun™ '331'	7082	7374	_	62	692		
Georgia-16HO	6755	7215	_	66	604		
Georgia-09B	6751	7322	6489	66	696		
AU-NPL 17	6706	6984	_	65	618		
TUFRunner™ '511'	6684	6925	6340	64	548		
Georgia-13M	6528	6662	5981	66	760		
TifNV-HI O/L	6527	6748	_	62	548		
Georgia-06G	6437	6826	6181	55	604		
Algrano 914	6256	6497	_	63	688		
TUFRunner™ '297'	5904	6907	6399	62	516		
Georgia-14N	5813	5984	5484	67	744		
Algrano QR14	5172	6297	5757	60	696		
Mean	6440			63	649		
CV	11.9						
LSD (0.05)	NS						
\mathbb{R}^2	54.7						
Error DF	36						

MAFES DELTA BRANCH, STONEVILLE

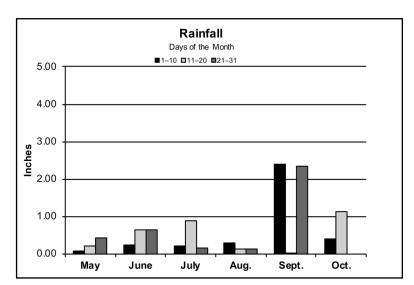
Crop Summary

Peanut plots were planted into a well-prepared seedbed that was do-alled just before planting. Soil moisture at planting was optimum for germination of seed. All plots emerged to a stand. Disease pressure was low during the season. Rainfall that occurred during

September slightly delayed digging until early October. The plots were combined later that month due to rainfall that occurred in the weeks after peanuts were dug. No difficulties occurred during harvest and good yields were observed at this location.

Soil typeBosket and Beulah very fine sandy loam

Soil pH 6.8


Soil fertilityP=H, K=H
Planting dateMay 9
Digging dateOctober 2
Harvest dateOctober 22
Previous crop ...Grain Sorghum

Herbicide Preemergence — Dual II Magnum @ 24 oz/A and Valor @ 2 oz/A on May 9

Postemergence — Select MAX @ 16 oz/A + COC @ 32 oz/A on July 2 and July 30

FungicideAbound @ 16 oz/A on June 26; Fontelis @ 24 oz/A on July 30

	Inches
May	0.71
June	1.51
July	1.26
August	0.57
September	4.75
October	1.53
Total	.10.33

Table 6. Yield, average seed size, and grade of peanut varieties at the MAFES Delta Branch, Stoneville.						
Variety	2018 yield	2-year avg.	3-year avg.	TSMK	Seed avg.	
	Ib/A	Ib/A	Ib/A	%	no./lb	
Georgia-06G	7739	7128	6471	71	560	
Georgia-16HO	7731	7611	_	65	568	
Georgia-12Y	7338	6985	6100	66	696	
TUFRunner™ '511'	7197	6850	6165	66	580	
FloRun™'331'	7150	7111	_	67	608	
TUFRunner™ '297'	6838	6814	6213	69	500	
Georgia-13M	6817	6841	5954	67	704	
AU-NPL 17	6730	6332	_	65	600	
Algrano 914	6392	6320	_	69	700	
Georgia-09B	5712	6201	5537	68	576	
TifNV-HI O/L	5495	5734	_	67	568	
Georgia-14N	5323	5039	4769	71	688	
Algrano QR14	5011	5781	5399	63	752	
Mean	6575			67	623	
CV	9.8					
LSD (0.05)	927.4					
R ²	73.2					
Error DF	36					

9

NORTHEAST MISSISSIPPI BRANCH, VERONA

Crop Summary

The peanut plots were planted into a well-prepared seedbed that had been hipped and rolled just before planting. Soil moisture at planting was ideal for germination. All plots emerged to a good stand. This location experienced a short dry spell during the month of May;

however, timely rains fell throughout the remainder of the growing season. The digging and harvest process was conducted in a timely manner without difficulty and good yields were observed at this location.

Soil typeLeaper fine sandy loam

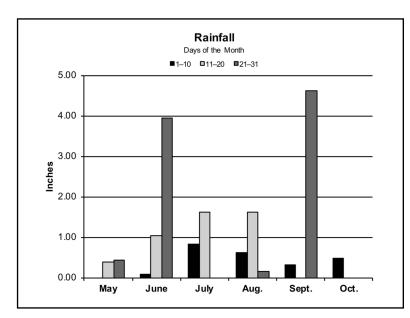
Soil pH6.3

Soil fertility P=H, K=H Planting date May 11 Digging date October 3 Harvest date October 10

Herbicide Preemergence — Dual II Magnum @ 24 oz/A, Valor @ 2 oz/A, and Gramoxone @ 32 oz/A

Postemergence — Zidua @ 2 oz/A and Volunteer (clethodim) @ 12 oz/A on June 12;


Volunteer (clethodim) @ 16 oz/A on July 23


Fungicide Bravo Weather Stik @ 16 oz/A on July 2; Bravo Weather Stik @ 16 oz/A and Headline

@ 14 oz/A on July 23

Previous crop ...Cotton

FertilizerSolubor @ 12 oz/A on July 2

	Inches
May	0.82
June	5.07
July	2.45
August	2.41
September	4.94
October	0.47
Total	.16.16

Table 7. Yield, average seed size, and grade of peanut varieties at the MAFES Northeast Mississippi Branch, Verona. Variety 2018 3-year **TSMK** Seed 2-year yield avg. avg. avg. Ib/A lb/A Ib/A % no./lb FloRun™'331' 6560 71.9 656 TUFRunner™ '511' 6387 72.8 600 Georgia-06G 6300 68.8 616 Georgia-16HO 6298 71.0 608 TUFRunner™ '297' 6115 70.7 504 TifNV-HI O/L 70.3 6078 568 Georgia-09B 5742 71.3 660 Algrano 914 5702 69.6 644 AU-NPL 17 71.2 572 5635 Georgia-13M 73.4 784 5613 Georgia-12Y 5597 70.4 692 MRS 35 5551 _ 72.1 616 ASUS 51 5494 69.2 648 68.7 628 ASUS 50 5333 Georgia-14N 74.1 4162 703 Algrano QR14 4149 66.9 672 5670 70.8 636 Mean CV 6.4 LSD (0.05) 517.6 R^2 84.2 Error DF 45

The mission of the Mississippi Agricultural and Forestry Experiment Station and the College of Agriculture and Life Sciences is to advance agriculture and natural resources through teaching and learning, research and discovery, service and engagement which will enhance economic prosperity and environmental stewardship, to build stronger communities and improve the health and well-being of families, and to serve people of the state, the region and the world.

George M. Hopper, Director

www.mafes.msstate.edu

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.