
BIG BLACK RIVER WATERSHED ASSESSMENT:

Preliminary Report

MISSISSIPPI AGRICULTURAL & FORESTRY EXPERIMENT STATION + GEORGE M. HOPPER, DIRECTOR

MISSISSIPPI STATE UNIVERSITY + MARK E. KEENUM, PRESIDENT + GREGORY A. BOHACH, VICE PRESIDENT

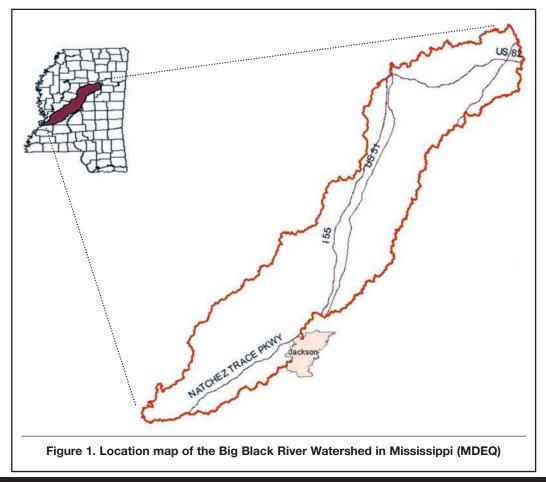
Big Black River Watershed Assessment: Preliminary Report

Trey Robinson

Graduate Research Assistant Department of Agricultural and Biological Engineering

Prem B. Parajuli Assistant Professor Department of Agricultural and Biological Engineering

This document was approved for publication as MAFES Bulletin 1217 of the Mississippi Agricultural and Forestry Experiment Station. It was published by the Office of Agricultural Communications, a unit of the Division of Agriculture, Forestry, and Veterinary Medicine at Mississippi State University. Copyright 2012 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.


CONTENTS

Description 1
Overview of Water Quality Issues 2
Land Use 2
Land Use Key 2
Land Uses and Soil Types
Land Uses Map
Soil
Subbasins
Subbasins Map7
Subbasin Area and Elevation
U.S. Geological Survey (USGS) Gages
USGS Gage Stations Locations
USGS Gage Stations Data
Slope 10
Major River Network
•
Major River Network 11
Major River Network
Major River Network
Major River Network 11 Rain Gage 12 Rain Gage Stations 12 Rain Gage Data 13
Major River Network 11 Rain Gage 12 Rain Gage Stations 12 Rain Gage Data 13 Hydrologic Soil Group 14
Major River Network11Rain Gage12Rain Gage Stations12Rain Gage Data13Hydrologic Soil Group14Elevation15
Major River Network11Rain Gage12Rain Gage Stations12Rain Gage Data13Hydrologic Soil Group14Elevation15Cities and Towns16
Major River Network11Rain Gage12Rain Gage Stations12Rain Gage Data13Hydrologic Soil Group14Elevation15Cities and Towns16All Cattle and Calves17
Major River Network11Rain Gage12Rain Gage Stations12Rain Gage Data13Hydrologic Soil Group14Elevation15Cities and Towns16All Cattle and Calves17Population by County17

Big Black River Watershed Assessment: Preliminary Report

DESCRIPTION

The Big Black River Watershed (BBRW) is approximately 5,500 square kilometers and is located in north-central to western-central Mississippi. On the western side, the watershed is bounded by the Mississippi River. The Big Black River, which lies entirely within the boundaries of Mississippi, begins in Webster County near the town of Eupora in northcentral Mississippi and flows southwesterly for approximately 300 miles to its mouth at the Mississippi River, 25 miles south of Vicksburg, Mississippi. Most of the region is made up of hilly to gently rolling land and is largely forested. On the western side of the basin, high bluffs are present as the land nears the Mississippi River (MFC 2006). There are 11 primary counties within the watershed: Attala, Carroll, Choctaw, Claiborne, Hinds, Holmes, Madison, Montgomery, Warren, Webster, and Yazoo.

1

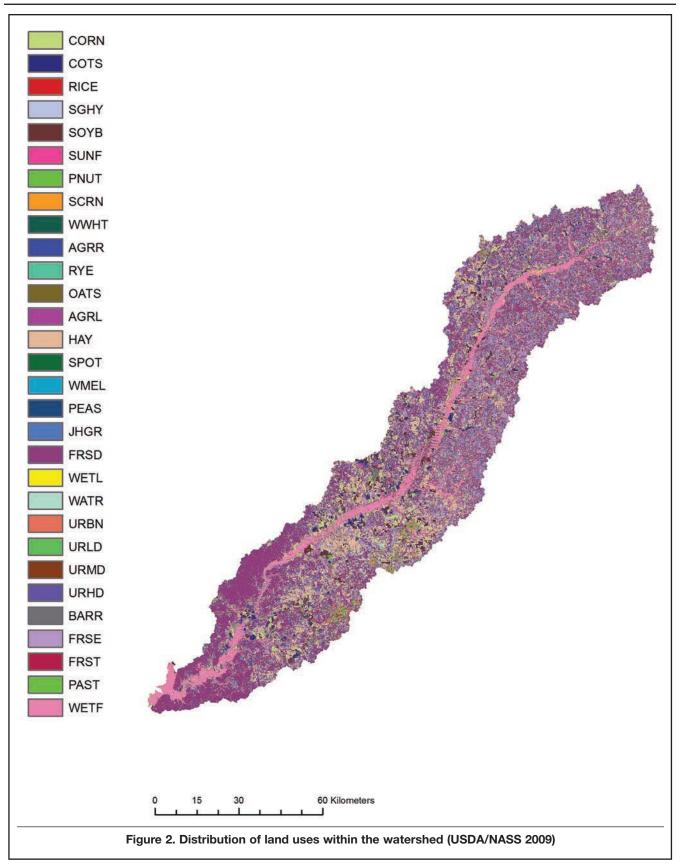
OVERVIEW OF WATER QUALITY ISSUES

The BBRW is primarily threatened by nonpointsource pollutants, such as old pesticides, livestock operations, and urban development (MDEQ 2005). Even though both DDT and Toxaphene have been out of production since the early 1980s, we are still seeing trace amounts in the BBRW. Extreme rainfall events can carry pollutants, such as pathogens, sediments, pesticides, and nutrients, into the watershed's rivers and streams. Excessive transport of these pollutants can cause the water quality to severely decline. Table 1 lists each specific water body by name and its source of pollutants.

Water body name	Pollutants of concern
Jack Lake Creek and Indian Creek	Toxaphene / DDT
Betsy Creek	Organic enrichment / low dissolved oxygen
Big ByWy Creek	Organic enrichment / low dissolved oxygen
Bogue Chitto Creek	pH / organic enrichment / low dissolved oxygen
Cox Creek	Organic enrichment / low dissolved oxygen
Fourteen Mile and Bakers Creeks	Fecal coliform
Hays Creek	Fecal coliform
Bear Creek and Tilda Bogue	Nutrient and organic enrichment /low dissolved oxygen
Panther Creek	Fecal coliform
Porter and Cox Creeks	Fecal coliform
Town Creek	Organic enrichment / low dissolved oxygen

LAND USE

Land use classifications are very important when considering the overall quality of a watershed. Different land practices have different affects on water quality and can determine the overall cleanliness of the water. The Water Quality Act of 1965 was the first law passed to require states to maintain certain federal guidelines with respect to water cleanliness (DES 2013). Following the Water Quality Act of 1965 was the Clean Water Act (CWA) of 1972, which was passed to improve water-quality standards. The CWA requires states to determine both point and nonpoint pollutant loads that may enter a water body. The state must then determine how much of the pollutants can be allowed in the water body and still be deemed clean and meet the minimum set standards of the CWA (EPA 2013). This is known as the Total Maximum Daily Load (TMDL). The overall land use in the Big Black River Watershed is pastureland (33%), forestland (63%), residential (2%), and cropland (2%).


Land Use Key — FRSD = Forest-Deciduous, FRSE = Forest-Evergreen, FRST = Forest-Mixed, WETF = Wetlands-Forested, HAY = Hay, JHGR = Johnsongrass, COTS = Upland Cotton, SOYB= Soybean, CORN = Corn, URBN = Residential Urban Area, AGRL = Agricultural Land-Generic, AGRR = Agricultural Land- Row Crops, RICE= Rice, SGHY = Sorghum Hay, SUNF = Sunflower, PNUT = Peanut, SCRN = Sweet Corn, WWHT = Winter Wheat, RYE= Rye, OATS = Oats, SPOT = Sweet Potato, WMEL = Watermelon, PEAS = Garden or Canning Peas, WETL = Wetlands- Mixed, WATR= Water, URLD = Urban Low Density, URMD = Urban Medium Density, URHD = Urban High Density, BARR = Barren, PAST = Pasture.

Land Uses and Soil Types

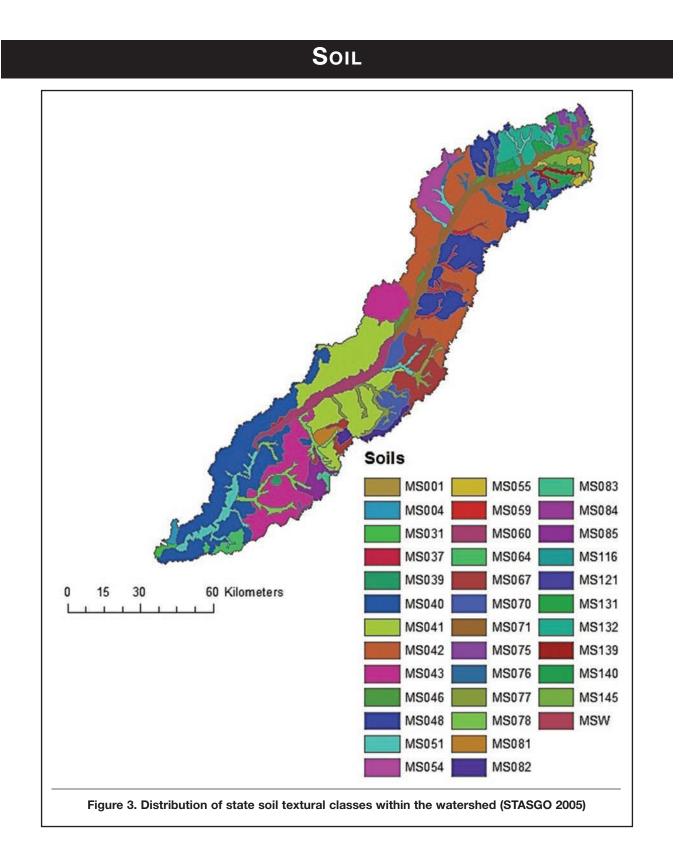
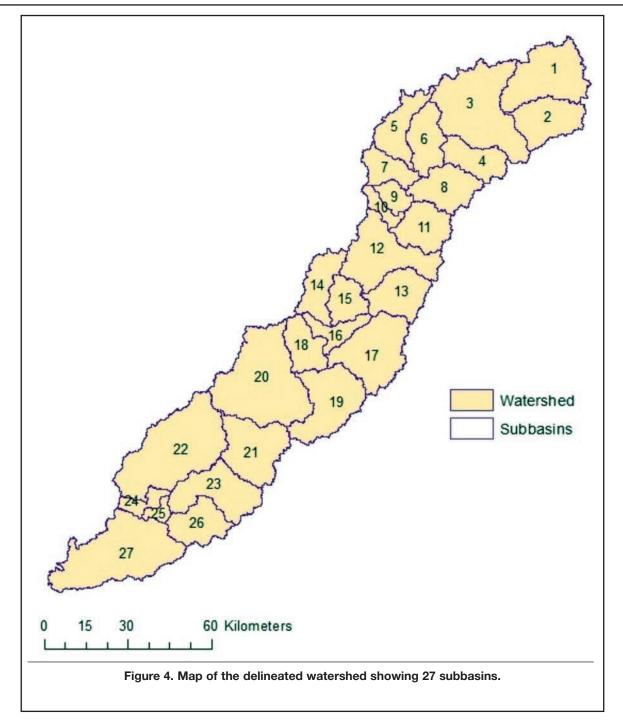

Subbasin	No. of HRUs	Major land uses	Dominant soil types	Dominant soil textures
1	142	HAY, JHGR, FRSD, FRSE,FRST, WETF	MS155	Oaklimeter, Sweatman
2	187	FRSD, FRST,FRSE	MS019	Chenneby, Sweatman, Maben
3	126	HAY, JHGR, FRSD, FRSE, FRST, WETF	MS155, MS019	Smithdale, Smithdale
4	114	HAY, JHGR, FRSD, FRSE, FRST, WETF	MS097, MS019	Smithdale, Smithdale
5	168	Hay, JHGR, FRSD, FRSE, URBN	MS097	Collins, Smithdale
6	146	Hay, JHGR, FRSD, FRSE, WETF	MS097	Smithdale, Smithdale
7	144	Hay, JHGR, FRSD, FRSE, WETF	MS015	Smithdale, Providence
8	193	JHGR, FRSD, FRSE	MS007	Smithdale
9	114	Hay, JHGR, FRSD, FRSE, WETF	MS015, MS021	Smithdale, Memphis
10	83	Hay, JHGR, FRSD, FRSE, WETF	MS021	Memphis
11	187	HAY, JHGR, FRSD, FRSE, FRST, WETF	MS007	Smithdale, Providence
12	119	Hay, JHGR, FRSD, FRSE, WETF	MS007, MS051	Smithdale, Smithdale
13	200	HAY, JHGR, FRSD, FRSE, FRST, WETF	MS089, MS007	Smithdale, Smithdale, Ora
14	139	HAY, JHGR, FRSD, FRSE	MS051	Memphis, Collins, Smithdale
15	132	Hay, JHGR, FRSD, FRSE, WETF	MS051, MS089	Memphis, Oaklimeter
16	105	Hay, JHGR, FRSD, FRSE, WETF	MS089	Ariel, Oaklimeter
17	163	HAY, JHGR, FRSD, FRSE, FRST, WETF	MS089	Providence, Smithdale, Ariel
18	100	COTS, SOYB, HAY, JHGR, FRSD, WETF	MS163	Loring, Falaya
19	142	CORN, HAY, JHGR, FRSD, URBN, FRSE	MS089	Loring, Ariel
20	124	HAY, FRSD, WETF, CORN	MS089,MS163	Loring, Loring
21	91	HAY, JHGR, FRSD, FRSE	MS049	Riedtown, Loring
22	116	FRSD, WETF, HAY	MS149, MS049	Memphis, Memphis
23	174	HAY, JHGR, FRSD, FRSE, URBN	MS049	Oaklimeter, Memphis

Table 2. Model-generated subbasins, hydrologic responseunits (HRUs), land uses, and dominant soils in the watershed.					
Subbasin No. of HRUs Major land uses Dominant soil types Dominant soil textures					
24	120	COTS, HAY, FRSD, WETF	MS149, MS049	Memphis, Riedtown	
25	126	HAY, FRSD, WETF	MS049	Memphis, Riedtown	
26	119	HAY, JHGR, FRSD, FRSE	MS049	Memphis, Riedtown	
27	90	HAY, FRSD, WETF	MS149, MS021	Memphis, Memphis	
¹ MDEQ 2013					

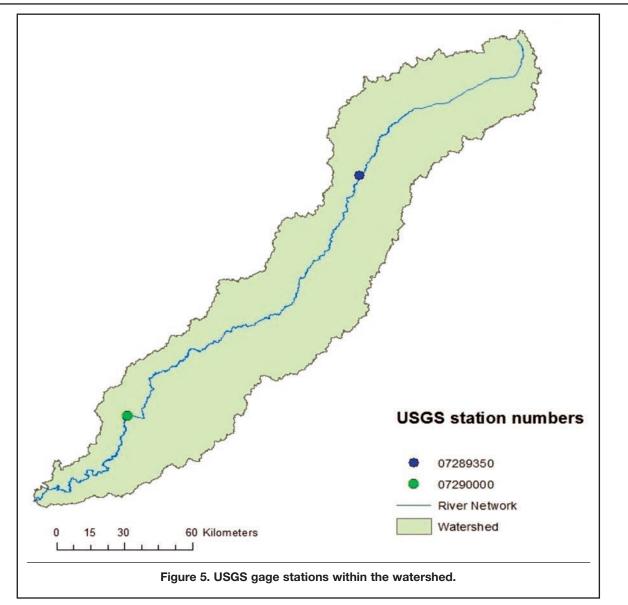
Land Use Map



Mississippi Agricultural and Forestry Experiment Station 5

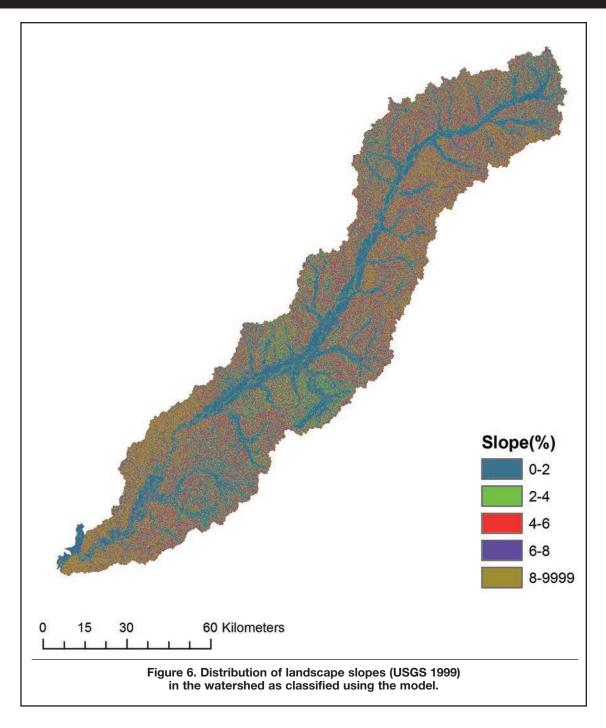
SUBBASINS

Subbasins Map



Subbasin Area and Elevation

Subbasin	Area (ha)	Avg. elevation (m)	Subbasin	Area (ha)	Avg. elevation (m)
1	46,344	131	15	16,815	79
2	29,621	133	16	13,023	76
3	68,223	124	17	44,966	90
4	21,161	123	18	19,783	72
5	23,268	117	19	42,235	81
6	23,466	108	20	77,519	71
7	16,432	108	21	39,492	81
8	26,795	118	22	76,542	68
9	9,438	100	23	37,285	79
10	7,311	100	24	8,238	48
11	24,871	113	25	4,732	49
12	46,164	95	26	23,745	51
13	26,920	100	27	71,706	53
14	22,783	91			


U.S. GEOLOGICAL SURVEY (USGS) GAGES

USGS Gage Station Locations

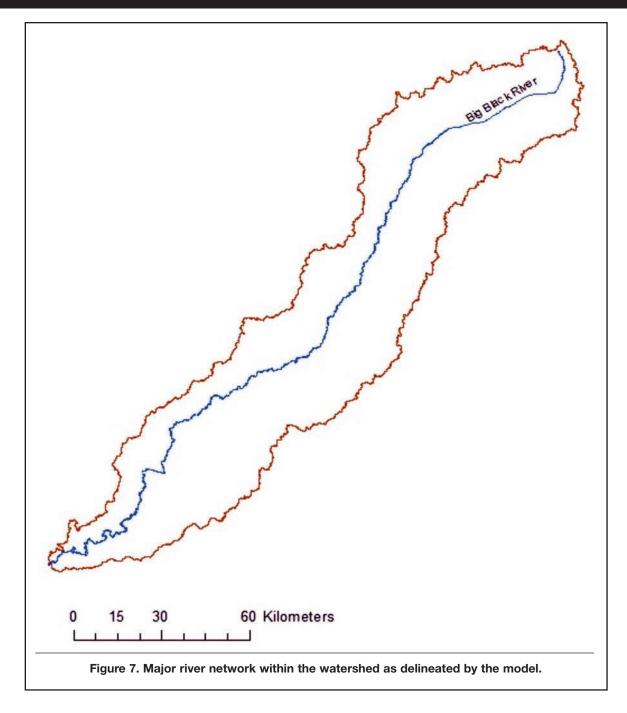
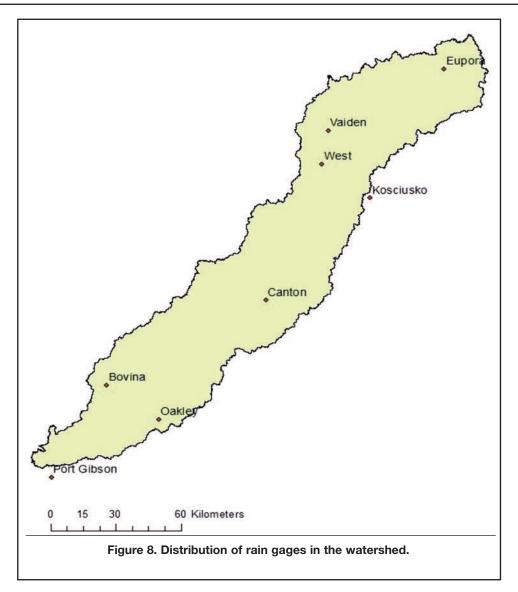


Table 4. Name and coordinates of the USGS gage stations in the watershed.			
Name	Latitude	Longitude	
Big Black River at Bovina, Mississippi (USGS 07290000)	32°20'52"	90°41'49"	
Big Black River at West, Mississippi (USGS 07289350)	33°11'40"	89°46'16"	

SLOPE



MAJOR RIVER NETWORK

RAIN GAGE

Rain Gage Stations

Rain Gage Data

Table 4	. Location of rain gage statior	ns for each subbasin assigned	by the model.
Subbasin	Station	Subbasin	Station
1	Eupora	15	West
2	Eupora	16	West
3	Winona	17	West
4	Winona	18	Canton
5	Vaiden	19	Canton
6	Winona	20	Canton
7	Vaiden	21	Canton
8	Vaiden	22	Bovina
9	Vaiden	23	Oakley
10	Vaiden	24	Bovina
11	Kosciusko	25	Oakley
12	Kosciusko	26	Oakley
13	West	27	Port Gibson
14	West		

Table 6. Coordinates and elevations of the rain gage locations used by the model.			
Name	Latitude (degrees)	Longitude (degrees)	Elevation (m)
Bovina	32.35	-90.73	72.85
Canton	32.67	-90.04	76.20
Eupora	33.56	-89.24	134.10
Kosciusko	33.06	-89.58	125.00
Oakley	32.21	-90.51	62.50
Port Gibson	31.99	-90.97	36.60
Vaiden	33.33	-89.75	123.10
West	33.20	-89.78	90.10

HYDROLOGIC SOIL GROUP

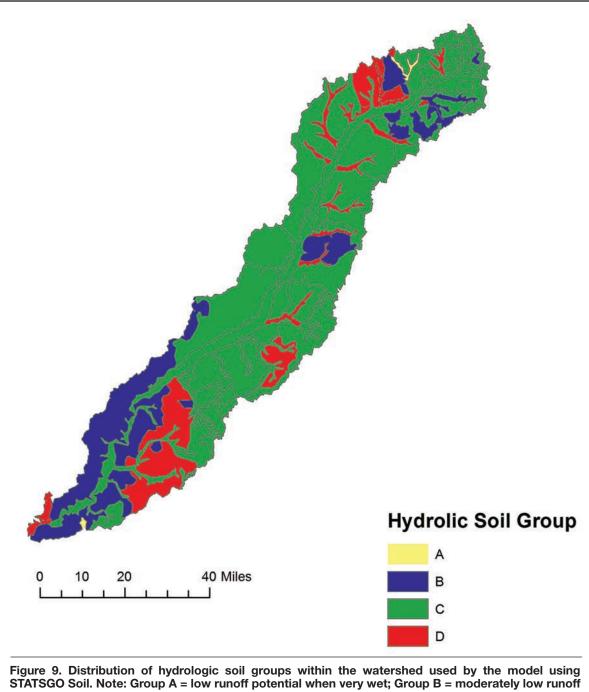
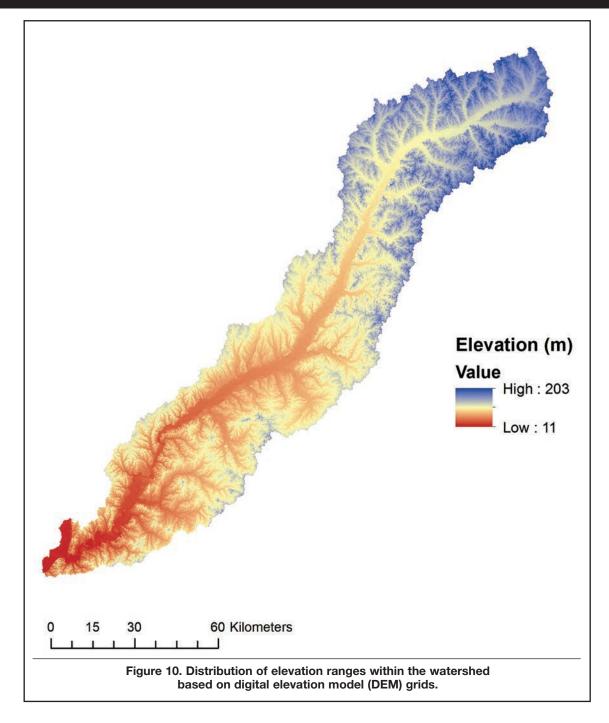
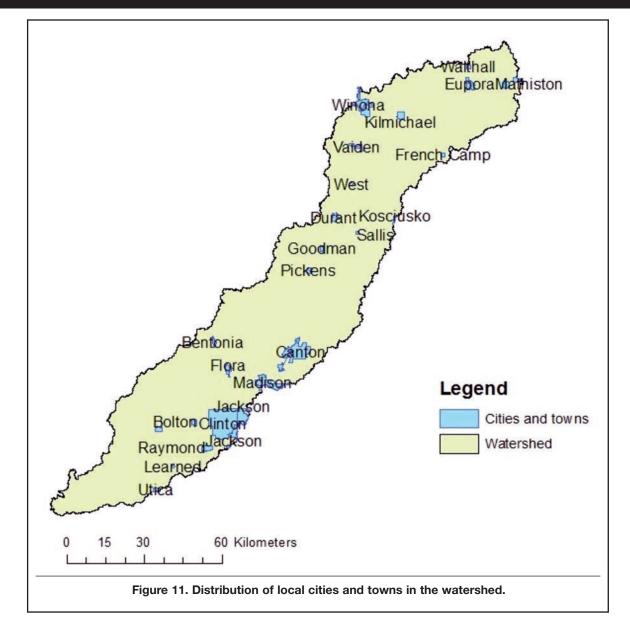
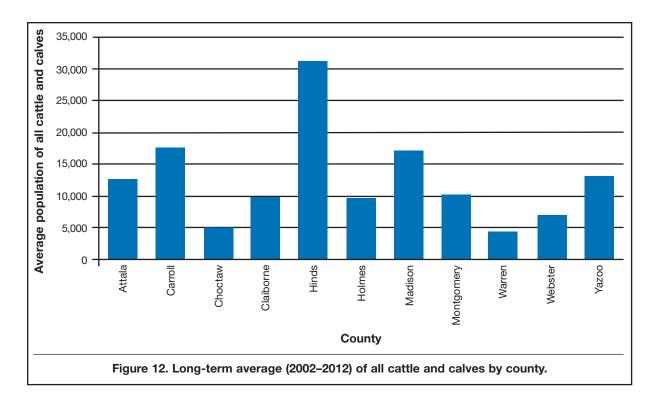




Figure 9. Distribution of hydrologic soil groups within the watershed used by the model using STATSGO Soil. Note: Group A = low runoff potential when very wet; Group B = moderately low runoff potential when very wet; Group C = moderately high runoff potential when very wet; and Group D = high runoff potential when very wet.

ELEVATION



CITIES AND TOWNS

ALL CATTLE AND CALVES

The 11 major counties comprising the BBRW are Attala, Carroll, Choctaw, Claiborne, Hinds, Holmes, Madison, Montgomery, Warren, Webster, and Yazoo. Figure 12 shows the long-term average of all cattle and calves (by head) for each county from 2003 to 2012 (USDA/NASS 2012).

POPULATION BY COUNTY

Table 6. Estimated populations of each county.1

County	Population	County	Population
Attala	19,564	Madison	95,203
Carroll	10,597	Montgomery	10,925
Choctaw	8,547	Warren	48,773
Claiborne	9,604	Webster	10,253
Hinds	245,285	Yazoo	28,065
Holmes	19,198		

DISCUSSION

This research used the Soil and Water Assessment Tool (SWAT) to simulate monthly stream flows from the Big Black River in Mississippi. The SWAT model was successfully calibrated and validated using stream flow data from the two USGS gage stations (07290000 and 07289350). This preliminary report collected and analyzed geospatial and field data for the watershed. In addition, the calibrated and validated model will help us to perform future modeling studies related to bioenergy production and water quality assessment.

ACKNOWLEDGMENTS

This material is based on the work partially supported by the Bagley College of Engineering at Mississippi State University, Sustainable Energy Research Center at Mississippi State University, and Department of Energy under Award Number DE- FG3606GO86025, as well by the Micro CHP and Biofuel Center. We also acknowledge the input of Tom Cathcart, Jason Ward, and Dennis Rowe in improving the quality of this report.

REFERENCES

Mississippi Department of Environmental Quality (MDEQ). 2013. Big Black River Basin. MDEQ.

Available at: http://www.deq.state.ms.us/mdeq.nsf/page/WMB_Big_ Black_River_Basin Accessed on: 3/21/2013.

Mississippi Department of Environmental Quality (MDEQ). 2010. Fecal Coliform TMDL for Panther Creek. MDEQ. Available at: http://www.deq.state.ms.us/MDEQ.nsf/0/866D5BEDAE 5D1428862577500064DA53/\$file/BigBlackRBPantherC reekFecalColiformTMDLMay10.pdf?OpenElement. Accessed on 3/18/2013.

Mississippi Forestry Commission (MFC). 2006. Big Black, Tombigbee, Tennessee River Basin Group BMP Implementation Survey for Mississippi. MFC. Available at: http://www.mfc.ms.gov/pdf/mgt/wq/bb-tn-tbriver%20grant.pdf. Accessed on 3/22/2013.

New Hampshire Department of Environmental Services (DES). 2013. Water Quality.

(DES). 2013. Water Quality. Available at: nh.gov/organization/divisions/water/wmb/wqs/history.htm. Accessed on 3/18/2013. Mississippi Department of Environmental Quality

(MDEQ). 2007.MDEQ 2007. State of Mississippi Water Quality Criteria for Intrastate, and Interstate Coastal waters.

Available at:

http://water.epa.gov/scitech/swguidance/standards/uploa d/2008_10_17_standards_wqslibrary_ms_ms_4_wqs.pdf. Accessed on 3/23/2013.

United States Environmental Protection Agency (EPA). 2013. Clean Water Act. EPA.

Available at: http://cfpub.epa.gov/npdes/cwa.cfm?program_id=6. Accessed on 3/18/2013.

 U.S. Department of Agriculture, National Agricultural Statistics Service (USDA/NASS). 2012. Mississippi County Data- Livestock. United States Department of Agriculture (USDA). Available at: http://www.nass.usda.gov/Statistics_by_State/Mississi ppi/Publications/ County_Estimates/index.asp. Accessed on:4/15/2013.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.

We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, or any other characteristic protected by law.