December 2014

# LOWER PEARL RIVER WATERSHED ASSESSMENT: Preliminary Report





MISSISSIPPI AGRICULTURAL & FORESTRY EXPERIMENT STATION + GEORGE M. HOPPER, DIRECTOR

MISSISSIPPI STATE UNIVERSITY + MARK E. KEENUM, PRESIDENT + GREGORY A. BOHACH, VICE PRESIDENT

# Lower Pearl River Watershed Assessment: Preliminary Report

Abdullah O. Dakhlalla

Graduate Research Assistant Department of Agricultural and Biological Engineering

Prem B. Parajuli Assistant Professor Department of Agricultural and Biological Engineering

This document was approved for publication as MAFES Bulletin 1216 of the Mississippi Agricultural and Forestry Experiment Station. It was published by the Office of Agricultural Communications, a unit of the Division of Agriculture, Forestry, and Veterinary Medicine at Mississippi State University. Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.

# CONTENTS

| Description                      |
|----------------------------------|
| Overview of Water Quality Issues |
| Land Use                         |
| Land Uses and Soil Types         |
| Land Uses Map                    |
| Soil                             |
| Subbasins                        |
| Subbasins Map                    |
| Subbasin Area and Elevation      |
| U.S. Geological Survey           |
| USGS Gage Stations Map12         |
| USGS Gage Station Locations      |
| Slope                            |
| Major River Network              |
| Rain Gage                        |
| Rain Gage Locations              |
| Rain Gage by Subbasin            |
| Hydrologic Soil Group            |
| Elevation                        |
| Cities                           |
| Beef Cows                        |
| Population by County             |
| Preliminary Results/Discussion   |
| Acknowledgements                 |
| References                       |

# Lower Pearl River Watershed Assessment: Preliminary Report

#### DESCRIPTION

The Lower Pearl River Watershed (LPRW) is the southern part of the Pearl River flowing out of the Ross Barnett Reservoir that eventually flows into the Gulf of Mexico. The watershed covers an area of approximately 12,500 square kilometers and contains areas of 19 counties in both Mississippi and Louisiana. The major tributary of the LPRW is the Strong River, which contributes flow just below Rankin County. The land uses of the LPRW are mainly composed of forests, wetlands, pastures, and urban areas. Most of the soils are classified as hydrologic soil group D and C and are mostly coarse-loamy in texture. The watershed is known for experiencing periodic flooding, and some of these floods have caused significant damage to infrastructure. In April 1979, the Great Easter Flood was one of the most devastating floods to ever occur in Mississippi. The floodwaters rose to almost 25 feet above the flood stage and caused \$257 million in damage (MDEQ 2000). The LPRW currently suffers from waterquality deterioration due to pollutants including pathogens, pesticides, nutrients, and sediments. Pollutant transport is likely caused by poultry litter applications, beef and dairy cattle production, urban development, and agricultural practices (MDEQ 2013).



Pearl River Watershed in Mississippi.

### **OVERVIEW OF WATER QUALITY ISSUES**

The streams and tributaries of the LPRW are threatened by several potential pollutant sources, primarily nonpoint-source pollution (MDEQ 2000). In the LPRW, these nonpoint sources originate from fertilizer applications, livestock operations, and urban development (MDEQ 2000). In instances of extreme storm events, rainfall that flows overland can carry sediments, pathogens, nutrients, and pesticides throughout the watershed into the watershed's rivers and streams. Excessive transport of these pollutants is harmful to the watershed's surface water quality. Table 1 lists the main water-quality concerns of each tributary of the LPRW. Sedimentation is a major concern in the basin because it causes easier transport of other contaminants by allowing them to attach to the sediment particles. As a result, excess nitrogen and phosphorus can accumulate in water bodies, which can cause more water-quality problems such as eutrophication.

| Table 1. Pollutants of concern in the various tributaries of the Pearl River within the watershed. |                                                                                              |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Water body name                                                                                    | Pollutants of concern                                                                        |  |  |  |
| Bahala Creek                                                                                       | Biological impairment due to sediments, pathogens                                            |  |  |  |
| Dabbs Creek                                                                                        | Biological impairment due to sediments, nutrients, organic enrichment / low dissolved oxygen |  |  |  |
| Eutacutachee Creek                                                                                 | Biological impairment due to sediments, nutrients, organic enrichment / low dissolved oxygen |  |  |  |
| Hanging Moss Creek                                                                                 | Biological impairment due to sediments, nutrients, organic enrichment / low dissolved oxygen |  |  |  |
| Little Creek                                                                                       | Pathogens                                                                                    |  |  |  |
| Mulatoo Bayou                                                                                      | Organic enrichment / low dissolved oxygen                                                    |  |  |  |
| Pelahatchie Creek                                                                                  | Sediments, pesticides, pathogens, nutrients                                                  |  |  |  |
| Silver Creek                                                                                       | Sediments, pathogens                                                                         |  |  |  |
| Strong River                                                                                       | Biological impairment due to sediments, pathogens                                            |  |  |  |
| <sup>1</sup> MDEQ 2013                                                                             |                                                                                              |  |  |  |

## LAND USE

Anthropogenic and human activities occurring in various land uses throughout the basin can potentially affect water quality. Each land use can either improve or deteriorate water quality, depending on the management practices taking place. The primary land use in the LPRW is forestland, which is important for clean surface water because it can absorb rainfall to slow runoff, maintain water temperature, refill underground aquifers, and provide habitats for fish and wildlife (MDEQ 2000). Wetlands make up another major land use in the watershed that also serve to improve water quality by absorbing and filtering sediments and other contaminants. Pasturelands have cattle production and poultry litter application, while agricultural lands have fertilizer and pesticide applications as well as tillage operations (MDEQ 2000). These practices can be a threat to water quality, especially if they are not managed appropriately. Developing urban areas can also deteriorate water quality by allowing contaminated stormwater runoff to be easily transported to nearby streams.

Land Use Key — FRSD = Forest-Deciduous, FRSE = Forest-Evergreen, FRST = Forest-Mixed, PAST = Pasture, RNGB = Range-Brush, RNGE = Range-Grasses, SOYB = Soybean, URBN = Urban, URLD = Urban Low Density, URML = Urban Medium Density, URHD = Urban High Density, WETF = Wetlands-Forested, WETN = Wetlands-Nonforested, WATR = Water

| Table 2. Model-generated subbasins, hydrologic response units (HRUs), land uses, and dominant soils in the watershed. |             |                                                   |                        |                                                            |
|-----------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------|------------------------|------------------------------------------------------------|
| Subbasin                                                                                                              | No. of HRUs | Major land uses                                   | Dominant soil types    | Dominant soil textures                                     |
| 1                                                                                                                     | 36          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS089, MS089,<br>MS121 | Columbus,<br>Providence, Cascilla                          |
| 2                                                                                                                     | 28          | SOYB, FRSD, FRSE, FRST,<br>RNGB, PAST, WETF       | MS121, MS123           | Kipling, Urbo,<br>Savannah, Cascilla                       |
| 3                                                                                                                     | 32          | WATR, URBN, URLD, FRSD,<br>FRSE, RNGB, PAST, WETF | MS089, MS121           | Byram, Loring,<br>Kipling, Columbus                        |
| 4                                                                                                                     | 25          | URBN, URLD, URMD, FRSD,<br>FRSE, RNGB, PAST, WETF | MS049, MS089,<br>MS121 | Loring, Byram,<br>Cascilla, Smithdale                      |
| 5                                                                                                                     | 16          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS121                  | Kipling, Urbo                                              |
| 6                                                                                                                     | 25          | URBN, URLD, URMD,<br>URHD, WETF                   | MS049, MS121           | Loring, Byram,<br>Cascilla, Gillsburg                      |
| 7                                                                                                                     | 23          | URBN, URLD, URMD,<br>URHD, FRSD, WETF             | MS049, MS121           | Loring, Siwell,<br>Tippo, Gillsburg, Guyton                |
| 8                                                                                                                     | 47          | URBN, URLD, FRSD, FRSE,<br>FRST, RNGB, PAST, WETF | MS121                  | Providence, Smithdale,<br>Oaklimeter, Tippah               |
| 9                                                                                                                     | 26          | URBN, URLD, FRSD, FRSE,<br>FRST, RNGB, PAST, WETF | MS049, MS121           | Loring, Cascilla,<br>Bonn                                  |
| 10                                                                                                                    | 70          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS121                  | Smithdale, Providence,<br>Oaklimeter, Gillsburg, Kirkville |
| 11                                                                                                                    | 22          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS121, MS127,<br>MS129 | Smithdale,<br>Kirkville                                    |
| 12                                                                                                                    | 29          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS049, MS127           | Oaklimeter, Petal,<br>Smithdale, Providence                |
| 13                                                                                                                    | 11          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS127                  | Smithdale, Savannah,<br>Quitman                            |
| 14                                                                                                                    | 24          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS029                  | Providence,<br>Guyton                                      |
| 15                                                                                                                    | 24          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS029, MS077           | Gillsburg, Providence,<br>Guyton                           |
| 16                                                                                                                    | 15          | FRSD, FRSE, FRST,<br>RNGB, WETF                   | MS077                  | Cadeville, Guyton,<br>Jena                                 |
| 17                                                                                                                    | 17          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS085, MS077,<br>MS085 | Guin, Cadeville,<br>Ruston, Ora, Falaya                    |
| 18                                                                                                                    | 49          | URBN, FRSD, FRSE, FRST,<br>RNGB, PAST, WETF       | MS077                  | Cadeville, Providence,<br>Jena, Smithdale                  |
| 19                                                                                                                    | 43          | URBN, FRSD, FRSE, FRST,<br>RNGB, PAST, WETF       | MS077                  | Providence, Smithdale,<br>Cadeville, Jena                  |
| 20                                                                                                                    | 22          | FRSD, FRSE, FRST,<br>RNGB, PAST, WETF             | MS065, MS077,<br>MS127 | Smithdale, Jena                                            |
| 21                                                                                                                    | 37          | URBN, FRSD, FRSE, FRST,<br>RNGB, PAST, WETF       | MS065                  | Ora, Ruston,<br>Smithdale, Kirkville                       |
| 22                                                                                                                    | 20          | FRSE, FRST, RNGB,<br>PAST, WETF                   | MS077                  | Providence, Smithdale,<br>Jena, Rosebloom                  |
| 23                                                                                                                    | 26          | FRSE, FRST, RNGB,<br>PAST, WETF                   | MS065, MS091           | Smithdale, Ruston                                          |

| Table 2 (continued). Model-generated subbasins, hydrologic response units (HRUs), land uses, and dominant soils in the watershed. |             |                                       |                        |                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|------------------------|-------------------------------------------------------------------------|
| Subbasin                                                                                                                          | No. of HRUs | Major land uses                       | Dominant soil types    | Dominant soil textures                                                  |
| 24                                                                                                                                | 15          | FRSE, FRST, RNGB,<br>PAST, WETF       | MS077, MS065,<br>MS091 | Smithdale,<br>Ruston, Jena                                              |
| 25                                                                                                                                | 38          | URBN, FRSE, FRST,<br>RNGB, PAST, WETF | MS091                  | Ruston, Savannah,<br>Smithdale                                          |
| 26                                                                                                                                | 26          | FRSE, FRST, RNGB,<br>PAST, WETF       | MS091                  | Smithdale,<br>Ruston, Jena                                              |
| 27                                                                                                                                | 44          | FRSE, FRST, RNGB,<br>PAST, WETF       | MS091                  | Falkner, Ruston, Smithdale,<br>Bibb, Cascilla, Jena                     |
| 28                                                                                                                                | 29          | FRSE, RNGB,<br>PAST, WETF             | MS073                  | Freest, McLaurin,<br>Trebloc                                            |
| 29                                                                                                                                | 11          | FRSE, RNGB,<br>PAST, WETF             | MS091                  | Petal, Smithdale,<br>Ruston, Cascilla                                   |
| 30                                                                                                                                | 24          | URBN, FRSE, RNGB,<br>PAST, WETF       | LA117, MS147           | Ruston, Savannah,<br>Arkabutla, Ouachita                                |
| 31                                                                                                                                | 10          | WATR, WETF                            | MS109, LA117           | Arkabutla                                                               |
| 32                                                                                                                                | 67          | RNGE, URBN, FRSE,<br>RNGB, PAST, WETF | LA117                  | Ruston, Savannah,<br>Smithdale, Arkabutla,<br>Ouachita                  |
| 33                                                                                                                                | 20          | WATR, FRSE,<br>PAST, WETF             | MS109, LA117           | Arkabutla, Myatt, Ouachita,<br>Prentiss, Savannah, Bassfield,<br>Cahaba |
| 34                                                                                                                                | 15          | FRSE, RNGB,<br>PAST, WETF             | MS109                  | McLaurin, Smithdale,<br>Malbis, Arkabutla                               |
| 35                                                                                                                                | 13          | FRSE, RNGB,<br>PAST, WETF             | MS109                  | Malbis, Smithton                                                        |
| 36                                                                                                                                | 21          | URBN, FRSE, RNGB,<br>PAST, WETF       | MS109                  | Ruston, Malbis, Smithdale,<br>Dorovan, Smithton                         |
| 37                                                                                                                                | 7           | FRSE, RNGB, WETF                      | LA103                  | Myatt, Prentiss,<br>Stough, Arkabutla                                   |
| 38                                                                                                                                | 7           | URBN, FRSE,<br>RNGB, WETF             | MS109, MS045,<br>LA103 | Escambia, Smithton,<br>Atmore, Arkabutla,                               |
| 39                                                                                                                                | 18          | URBN, URLD, FRSE,<br>WETF, WETN       | LA103                  | Myatt, Prentiss, Stough,<br>Abita, Guyton, Arat, Larose                 |
| 40                                                                                                                                | 11          | WATR, WETN                            | LA103                  | Larose                                                                  |
| 41                                                                                                                                | 22          | WATR, URBN, FRSE,<br>RNGB, WETF, WETN | MS045, LA103           | Atmore, Beauregard,<br>Guyton, Clovelly, Larose,<br>Handsboro           |

4



## SOIL



## SUBBASINS

#### **Subbasins Map**



#### Subbasin Area and Elevation

|          | Та        | ble 3. Watershed subb | asin area and ave | erage elevation. |                    |
|----------|-----------|-----------------------|-------------------|------------------|--------------------|
| Subbasin | Area (ha) | Avg. elevation (m)    | Subbasin          | Area (ha)        | Avg. elevation (m) |
| 1        | 18742     | 99                    | 21                | 34860            | 115                |
| 2        | 21104     | 105                   | 22                | 16023            | 86                 |
| 3        | 21429     | 97                    | 23                | 25045            | 98                 |
| 4        | 16474     | 99                    | 24                | 40413            | 92                 |
| 5        | 63844     | 114                   | 25                | 35972            | 75                 |
| 6        | 8914      | 94                    | 26                | 30234            | 89                 |
| 7        | 11280     | 94                    | 27                | 15613            | 78                 |
| 8        | 33742     | 110                   | 28                | 33925            | 85                 |
| 9        | 24144     | 93                    | 29                | 58768            | 60                 |
| 10       | 22883     | 104                   | 30                | 52221            | 73                 |
| 11       | 110110    | 124                   | 31                | 51               | 22                 |
| 12       | 58345     | 97                    | 32                | 25737            | 60                 |
| 13       | 67941     | 111                   | 33                | 2944             | 18                 |
| 14       | 50398     | 99                    | 34                | 21282            | 35                 |
| 15       | 39817     | 107                   | 35                | 59985            | 55                 |
| 16       | 5389      | 70                    | 36                | 29354            | 52                 |
| 17       | 34226     | 110                   | 37                | 34401            | 12                 |
| 18       | 14799     | 89                    | 38                | 37370            | 9                  |
| 19       | 13613     | 103                   | 39                | 7522             | 2                  |
| 20       | 43212     | 125                   | 40                | 70               | 0                  |
|          |           |                       | 41                | 9070             | 1                  |
|          |           |                       |                   |                  |                    |

# U.S. GEOLOGICAL SURVEY (USGS)

#### **USGS Gage Station Locations**



| Table 4. Name and coordinates of the USGS gage stations in the watershed. |          |           |                   |          |           |
|---------------------------------------------------------------------------|----------|-----------|-------------------|----------|-----------|
| Name                                                                      | Latitude | Longitude | Name              | Latitude | Longitude |
| Haning Moss Creek                                                         | 32.365°  | -90.145°  | Monticello        | 31.553°  | -90.088°  |
| Lynch Creek                                                               | 32.285°  | -90.215°  | Whitesand Creek   | 31.471°  | -89.924°  |
| Jackson                                                                   | 32.281°  | -90.179°  | Columbia          | 31.238°  | -89.847°  |
| Ross Barnett Reservoir                                                    | 32.398°  | -90.065°  | East Hobolochitto | 30.574°  | -89.595°  |
| Rockport                                                                  | 31.791°  | -90.143°  | West Hobolochitto | 30.661°  | -89.686°  |
| D'Lo                                                                      | 31.978°  | -89.898°  | Bogalusa          | 30.793°  | -89.821°  |

Mississippi Agricultural and Forestry Experiment Station 9

# SLOPE



# MAJOR RIVER NETWORK



# RAIN GAGE

#### **Rain Gage Locations**



### Rain Gage by Subbasin

| Table 5. Location of rain gage stations for each subbasin assigned by the model. |         |                               |          |         |                 |
|----------------------------------------------------------------------------------|---------|-------------------------------|----------|---------|-----------------|
| Subbasin                                                                         | Station | Station name                  | Subbasin | Station | Station name    |
| 1                                                                                | C223516 | Goshen Springs                | 22       | C225987 | Monticello      |
| 2                                                                                | C223516 | Goshen Springs                | 23       | C221865 | Columbia        |
| 3                                                                                | C223516 | Goshen Springs                | 24       | C221865 | Columbia        |
| 4                                                                                | W03940  | Jackson International Airport | 25       | C221865 | Columbia        |
| 5                                                                                | C226811 | Pelahatchie                   | 26       | C221865 | Columbia        |
| 6                                                                                | W03940  | Jackson International Airport | 27       | C221865 | Columbia        |
| 7                                                                                | W03940  | Jackson International Airport | 28       | C227220 | Purvis          |
| 8                                                                                | W03940  | Jackson International Airport | 29       | C160238 | Angie           |
| 9                                                                                | C222099 | Crystal Springs               | 30       | C168405 | Sheridan        |
| 10                                                                               | C222099 | Crystal Springs               | 31       | C160945 | Bogalusa        |
| 11                                                                               | C229597 | White Oak                     | 32       | C168405 | Sheridan        |
| 12                                                                               | C222099 | Crystal Springs               | 33       | C168861 | Sun             |
| 13                                                                               | C222385 | D'Lo                          | 34       | C160945 | Bogalusa        |
| 14                                                                               | C227537 | Rockport                      | 35       | C227128 | Poplarville     |
| 15                                                                               | C223920 | Hazlehurst                    | 36       | C227128 | Poplarville     |
| 16                                                                               | C225987 | Monticello                    | 37       | C167161 | Pearl River     |
| 17                                                                               | C225987 | Monticello                    | 38       | C226921 | Picayune        |
| 18                                                                               | C225987 | Monticello                    | 39       | C168539 | Slidell         |
| 19                                                                               | C225987 | Monticello                    | 40       | C168539 | Slidell         |
| 20                                                                               | C227172 | Prentiss                      | 41       | W93868  | Bay Saint Louis |
| 21                                                                               | C227172 | Prentiss                      |          |         |                 |

| Table 6. Coordinates and elevations of the rain gage locations used by the model. |                               |               |          |           |  |
|-----------------------------------------------------------------------------------|-------------------------------|---------------|----------|-----------|--|
| Station                                                                           | Station name                  | Elevation (m) | Latitude | Longitude |  |
| C160238                                                                           | Angie                         | 40            | 30.917   | -89.783   |  |
| C160945                                                                           | Bogalusa                      | 31            | 30.783   | -89.867   |  |
| C167161                                                                           | Pearl River                   | 9             | 30.450   | -89.783   |  |
| C168405                                                                           | Sheridan                      | 101           | 30.850   | -89.983   |  |
| C168539                                                                           | Slidell                       | 3             | 30.267   | -89.767   |  |
| C168861                                                                           | Sun                           | 23            | 30.650   | -89.933   |  |
| C221865                                                                           | Columbia                      | 47            | 31.250   | -89.833   |  |
| C222099                                                                           | Crystal Springs               | 113           | 32.033   | -90.317   |  |
| C222385                                                                           | D'Lo                          | 102           | 31.950   | -89.933   |  |
| C223516                                                                           | Goshen Springs                | 98            | 32.517   | -89.917   |  |
| C223920                                                                           | Hazlehurst                    | 183           | 31.817   | -90.450   |  |
| C225987                                                                           | Monticello                    | 63            | 31.600   | -90.133   |  |
| C226811                                                                           | Pelahatchie                   | 113           | 32.317   | -89.783   |  |
| C226921                                                                           | Picayune                      | 18            | 30.517   | -89.700   |  |
| C227128                                                                           | Poplarville                   | 95            | 30.850   | -89.550   |  |
| C227172                                                                           | Prentiss                      | 104           | 31.600   | -89.867   |  |
| C227220                                                                           | Purvis                        | 115           | 31.150   | -89.400   |  |
| C227537                                                                           | Rockport                      | 61            | 31.800   | -90.150   |  |
| C229597                                                                           | White Oak                     | 137           | 32.083   | -89.683   |  |
| W03940                                                                            | Jackson International Airport | 95            | 32.317   | -90.083   |  |
| W93868                                                                            | Bay Saint Louis               | 9             | 30.367   | -89.583   |  |

# HYDROLOGIC SOIL GROUP



## ELEVATION



## CITIES



## **BEEF Cows**

There are 19 counties in the LPRW. Each county has its own unique beef-cow population. Table 7 shows the beef-cow population of each county from 2000 to 2012 (USDA/NASS 2012).

# Table 7. Long-term annual average (2000-12)beef cow populations of the counties.

| County          | Beef cows | County             | Beef cows |
|-----------------|-----------|--------------------|-----------|
| Copiah          | 11,625    | Pearl River        | 11,354    |
| Hancock         | 4,177     | Rankin             | 11,438    |
| Hinds           | 17,800    | Scott              | 11,325    |
| Jefferson Davis | 8,008     | Simpson            | 10,554    |
| Lamar           | 9,575     | Smith              | 11,854    |
| Lawrence        | 6,446     | Walthall           | 10,454    |
| Lincoln         | 10,869    | St. Tammany Parish | 5,850     |
| Madison         | 9,967     | Washington Parish  | 11,100    |

### POPULATION BY COUNTY

| Table 8. Estimated populations of each county.1 |            |                    |            |  |
|-------------------------------------------------|------------|--------------------|------------|--|
| County                                          | Population | County             | Population |  |
| Copiah                                          | 28,955     | Pearl River        | 55,295     |  |
| Hancock                                         | 45,255     | Rankin             | 145,165    |  |
| Hinds                                           | 248,643    | Scott              | 28,250     |  |
| Jefferson Davis                                 | 12,032     | Simpson            | 27,374     |  |
| Lamar                                           | 57,786     | Smith              | 16,345     |  |
| Lawrence                                        | 12,551     | Walthall           | 15,100     |  |
| Lincoln                                         | 34,900     | St. Tammany Parish | 239,453    |  |
| Madison                                         | 98,468     | Washington Parish  | 46,670     |  |
| Marion                                          | 26,442     |                    |            |  |
| <sup>1</sup> United States Census Bureau, 2012. |            |                    |            |  |

## **PRELIMINARY RESULTS/DISCUSSION**

This research evaluated the spatially and temporally variable streamflow responses of the LPRW using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was successfully calibrated and validated for monthly streamflow using monthly streamflow data from four USGS gage stations. Preliminary results of the calibrated and validated SWAT model determined reasonable performance for mean monthly stream flow. However, measured water quality data, such as sediment, total nitrogen, and total phosphorus, are needed in order to further calibrate the model for water quality. Based on SWAT preliminary simulation results, the water yields from the watershed subbasins were spatially and temporally variable, which was dependent on the topography, land-use conditions, and weather conditions of the watershed. Future research will involve calibrating the model for sediment and nutrient loading to study the combined impacts of management practices and future climate change on water quality. This study will ultimately be used to assist watershed managers to prioritize their best management practice implementation efforts to focus on the most impaired watershed subbasins.

#### ACKNOWLEDGMENTS

We would like to acknowledge the partial support from the Bagley College of Engineering and the Office of the Graduate School at Mississippi State University. We also acknowledge the input of Tom Cathcart, Jason Ward, and Dennis Rowe in improving the quality of this report.

#### References

Mississippi Department of Environmental Quality. 2000. Pearl River Basin Status Report. Available at http://www.deq.state.ms.us/mdeq.nsf/pdf/WMB\_prstatusreport/\$File/prstatusreport.pdf?OpenElement. Accessed on July 23, 2013.

Mississippi Department of Environmental Quality. 2013. Total Maximum Daily Load Program. Office of Pollution Control. Jackson, Mississippi. Available at http://www.deq.state.ms.us/MDEQ.nsf/page/TWB\_pear lstatrep?OpenDocument. Accessed on July 23, 2013.

- United States Census Bureau. 2012. State & County QuickFacts. Mississippi. Available at http://quickfacts.census.gov/qfd/states/28000.html. Accessed on July 23, 2013.
- U.S. Department of Agriculture, National Agricultural Statistics Service (USDA/NASS). 2012. Mississippi County Data - Livestock. United States Department of Agriculture (USDA). Available at http://www.nass.usda.gov/Statistics\_by\_State/Mississi ppi/Publications/County\_Estimates/index.asp. Accessed on July 23, 2013.



Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.

We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, or any other characteristic protected by law.