
TOWN CREEK WATERSHED ASSESSMENT: Preliminary Report

MISSISSIPPI AGRICULTURAL & FORESTRY EXPERIMENT STATION • GEORGE M. HOPPER, DIRECTOR

IISSISSIPPI STATE UNIVERSITY • MARK E. KEENUM, PRESIDENT • GREGORY A. BOHACH, VICE PRESIDENT

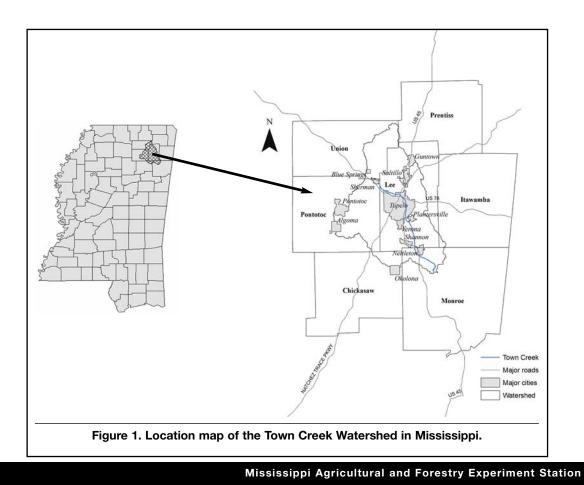
Town Creek Watershed Assessment: Preliminary Report

Prem B. Parajuli Assistant Professor Department of Agricultural and Biological Engineering

Sarah E. Duffy Graduate Research Assistant Department of Agricultural and Biological Engineering

This document was approved for publication as MAFES Bulletin 1199 of the Mississippi Agricultural and Forestry Experiment Station. It was published by the Office of Agricultural Communications, a unit of the Division of Agriculture, Forestry, and Veterinary Medicine at Mississippi State University. Copyright 2012 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi Agricultural and Forestry Experiment Station.

CONTENTS


Description
Overview of Water Quality Issues
Land Use
Land Uses and Soil Types
Land Uses Map
Soil
Subbasins
Subbasins Map
Subbasins Area and Elevation
U.S. Geological Survey
USGS Gage Stations Map
USGS Gage Station Location
Slope
Major River Network
Rain Gage
Rain Gage Stations
Rain Gages by Subbasin
Rain Gage Locations
Hydrologic Soil Group
Elevation
Cities
Beef Cows
Population by County
Preliminary Results
Discussion
Acknowledgments
References

Town Creek Watershed Assessment: Preliminary Report

DESCRIPTION

The Town Creek Watershed (TCW) is approximately 1,775 square kilometers and is located in northeast Mississippi. Its total area represents approximately 50% of the upper Tombigbee River Basin area contributing to the Aberdeen Pool on the Tennessee-Tombigbee Waterway (Ramirez-Avila, 2010). The majority of TCW lies within Lee, Union, and Pontotoc counties with smaller portions in Chickasaw, Monroe and Itawamba counties (Figure 1). There are 999 farms in the watershed with an average size of 187 acres (Natural Resources Conservation Service, 2011). The major water system within TCW is Town Creek, which begins near Sherman and culminates south of Nettleton (U.S. Environmental Protection Agency, 2006). Major threats to Town Creek's water quality are the consequences of agricultural activity and urban development. These activities, in addition to severe bank erosion, result in sedimentation and nutrient loading that affect the Tombigbee River Basin (Ramirez-Avila, 2010).

1

OVERVIEW OF WATER QUALITY ISSUES

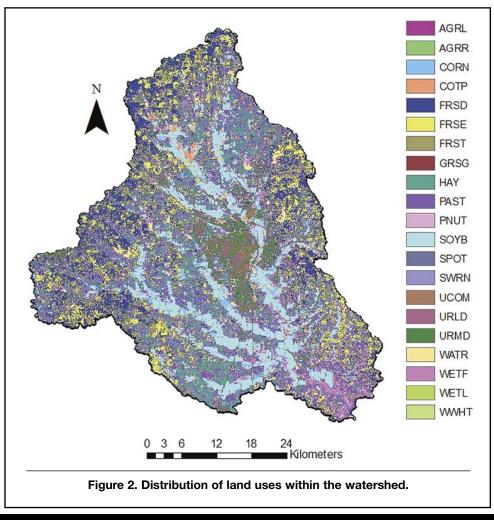
When excess rainfall flows across land, pollutants are deposited into water bodies. The TCW is threatened by several potential pollutant sources, primarily nonpoint-source pollution (Mississippi Department of Environmental Quality, 2009). Nonpoint-source pollutant sources stem from agricultural activities and urban development. Surface runoff from agricultural activities carries sediment, organic matter, and nutrients that can harm water quality in the watershed. Agricultural nonpointsource pollution can originate from livestock grazing, chicken litter application, fertilizer runoff, and other agricultural activities. The chief source of pollution for TCW is sediment (Table 1) (Environmental Protection Agency, 2006). As with all water bodies, nutrients are a major source of nonpoint-source pollution in the TCW. Phosphorus is a particularly harmful nutrient because it can cause eutrophication. Table 1 lists the water bodies and tributaries of Town Creek and the water quality concerns of each (Mississippi Department of Environmental Quality, 2009).

Table 1. Pollutants of concern in the various tributaries of Town Creek within the watershed.

Water body name	Pollutant of concern
Kings Creek	Biological Impairment due to Sediment
Roberts Branch	Biological Impairment due to Sediment
Town Creek	Biological Impairment due to Sediment
Tubbalubba Creek	Biological Impairment due to Sediment

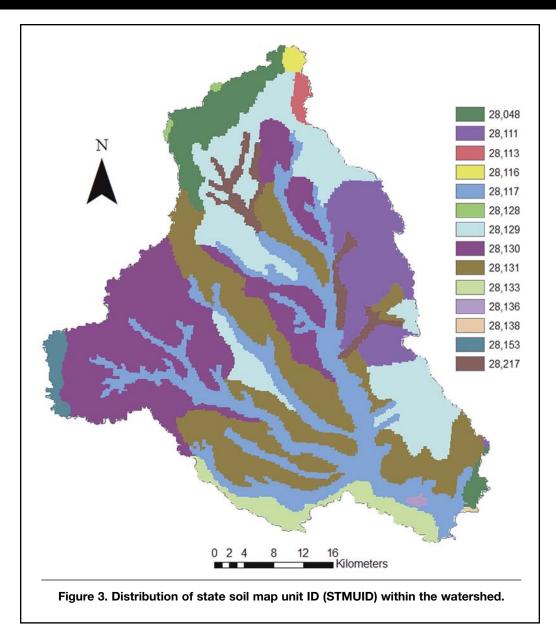
LAND USE

Land-use practices can affect water quality within a watershed, thus land cover classification is an important factor to analyze. Different types of land usage can have varying effects on water quality, such as sediment, nutrient, and pesticide retention. The 1965 Water Quality Act was the country's first law regarding water quality standards. Since that time, these regulations have been strictly enforced, and new regulations have been implemented to improve water quality. Similarly, the 1972 Clean Water Act (CWA) was passed in order to further improve waterquality standards (Environmental Protection Agency, 2007). The CWA requires each state to determine the amounts of point and nonpoint pollutants that can enter water bodies without compromising minimum water-quality standards. This pollution concentration is called the "Total Maximum Daily Load." CWA mandates make it necessary for the state to monitor land usage in watersheds. Nonpoint-source pollutants are difficult to manage, but it is still important to monitor the ways in which land is being used (Tagert, 2006). Forestland dominates the TCW at 44% while pasture/hay fields come in second at 27%. Agricultural fields (15%), urban areas (12%), and other uses (2%) constitute the remaining land cover (Table 2, Figure 2). The soil data used in the model showed 14 commonly known soil groups (Figure 3) in the watershed.

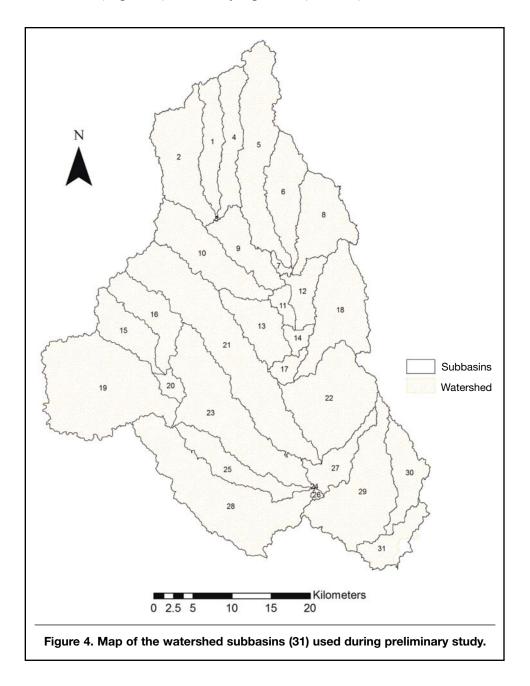

Subbasin	No. of HRUs	Land uses	Dominant soil types	Dominant soil names	
1	75	FRSD, FRST, PAST	MS048, MS129, MS217	BIBB, BELDEN, JENA	
2	57	FRSD, FRST, FRSE	MS048, MS129, MS217	BIBB, BELDEN, JENA	
3	7	SOYB, WWHT	MS217	JENA	
4	93	FRSD, FRST, PAST	MS129, MS048, MS217	BELDEN, BIBB, JENA	
5	143	PAST, SOYB, FRST	MS130, MS129, MS117	ATWOOD, BELDEN, CATALPA	
6	99	HAY, PAST, FRST	MS129, MS130, MS117	Belden, Atwood, Catalpa	
7	37	URMD, FRSD, FRST	MS131, MS117	BELDEN, CATALPA	
8	84	FRSD, FRST, FRSE	MS111, MS129, MS217	BIBB, BELDEN, JENA	
9	101	SOYB, PAST, HAY	MS131, MS117, MS129	BELDEN, CATALPA, BELDEN	
10	111	FRST, PAST, SOYB	MS129, MS131, MS117	BELDEN, BELDEN, CATALPA	
11	60	URMD, SOYB, URLD	MS117, MS130, MS131	CATALPA, ATWOOD, BELDEN	
12	104	FRSD, URMD, SOYB	MS111, MS217, MS117	BIBB, JENA, CATALPA	
13	42	URMD, URLD, UCOM	MS130, MS117, MS131	ATWOOD, CATALPA, BELDEN	
14	82	URMD, URLD, SOYB	MS117, MS111, MS217	CATALPA, BIBB, JENA	
15	45	FRSD, FRST, PAST	MS130, MS117	ATWOOD, CATALPA	
16	42	FRSD, FRST, PAST	MS130, MS117	ATWOOD, CATALPA	
17	47	URMD, SOYB, URLD	MS117, MS130, MS111	CATALPA, BELDEN, BIBB	
18	138	FRSD, FRST, FRSE	MS111, MS131, MS129, MS217	BIBB, BELDEN, BELDEN, JENA	
19	90	FRSD, FRST, PAST	MS130, MS153, MS117	ATWOOD, ARKABUTLA CATALPA	
20	26	SOYB, PAST, HAY	MS130, MS117	ATWOOD, CATALPA	
21	92	PAST, SOYB, HAY	MS131, MS117, MS130	BELDEN, CATALPA, ATWOOD	
22	152	SOYB, FRSD, FRST, PAST	MS129, MS117, MS111	BELDEN, CATALPA, BIBB	
23	102	SOYB, PAST, HAY	MS117, MS131, MS130	CATALPA, BELDEN, ATWOOD	
24	3	CORN, HAY, PAST	MS117	CATALPA	
25	81	PAST, SOYB, HAY	MS131, MS117, MS130	BELDEN, CATALPA, ATWOOD	
26	22	PAST, WETF, SOYB	MS117	CATALPA	
27	76	Soyb, Past, Wetf	MS117, MS131, MS130	CATALPA, BELDEN, ATWOOD	
28	107	HAY, PAST, FRST	MS131, MS117, MS133	BELDEN, CATALPA, BROOKSVILLE	

Subbasin	No. of HRUs	Land uses	Dominant soil types	Dominant soil names
29	144	PAST, FRST, SOYB	MS129, MS131, MS117	BELDEN, BELDEN, CATALPA
30	98	FRST, PAST, FRSD	MS131, MS129, MS117	BELDEN, BELDEN, CATALPA
31	86	PAST, WETF, FRST	MS117, MS133, MS048	CATALPA, BROOKSVILLE, BIBB

Land Use Key:


PAST = Pasture	URLD = Urban Low Density	SOYB = Soybean
WETF = Wetlands-Forested	URML = Urban Medium Density	WETL = Wetlands-Mixed
FRSD = Forest-Deciduous	WATR = Water	URHD = Urban High Density
FRSE = Forest-Evergreen	CORN = Corn	WWHT = Winter Wheat
FRST = Forest-Mixed		

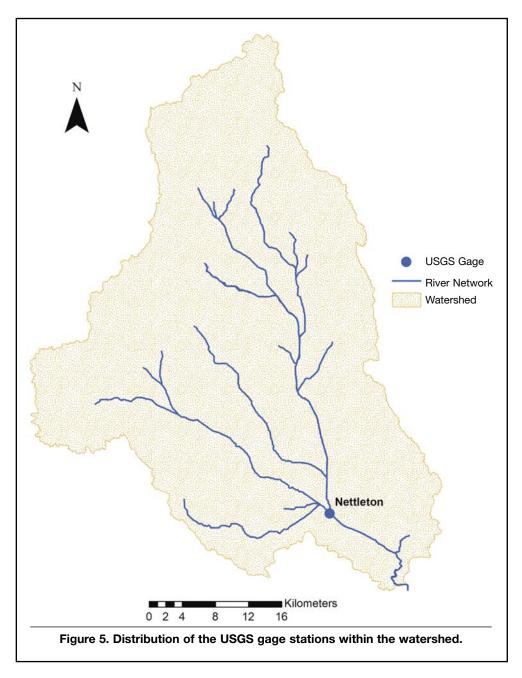
Land Uses Map


4 Town Creek Watershed Assessment: Preliminary Report

SOIL

SUBBASINS

The SWAT model used in this study delineated 31 subbasins in the watershed (Figure 4) with varying sizes (Table 3).



Subbasins Area and Elevation

Subbasin	Area (ha)	Avg. elevation (m)	Subbasin	Area (ha)	Avg. elevation (m)
1	3970.35	115	17	1144.71	72
2	7992.45	118	18	8471.25	117
3	22.86	93	19	16270.29	96
4	4663.26	113	20	950.04	88
5	10575.99	96	21	16973.1	98
6	5557.68	98	22	10767.42	94
7	384.3	92	23	12883.77	76
8	6370.83	115	24	0.36	67
9	4281.03	89	25	4503.24	83
10	7476.3	104	26	158.85	69
11	1074.96	81	27	3102.39	74
12	2713.14	82	28	14531.76	84
13	4524.03	92	29	10833.3	65
14	948.69	76	30	4215.24	77
15	4160.52	128	31	3168.99	61
16	4831.74	129			

U.S. GEOLOGICAL SURVEY (USGS)

This study used monthly observed stream flow data from the Nettleton USGS gage station (Figure 5, Table 4).

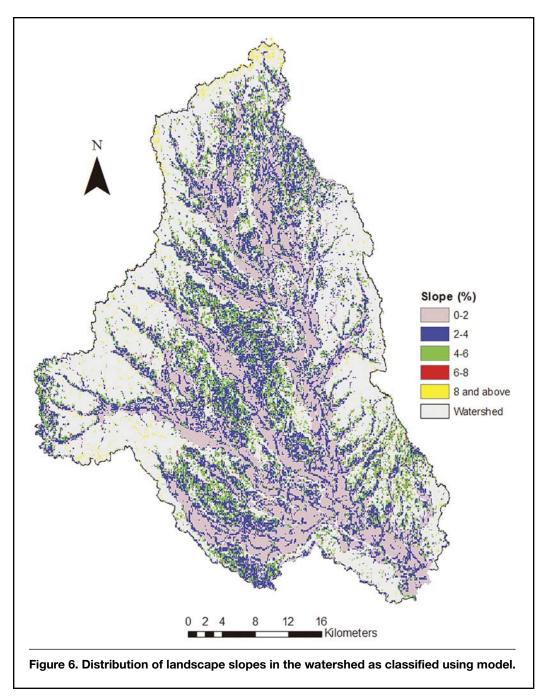
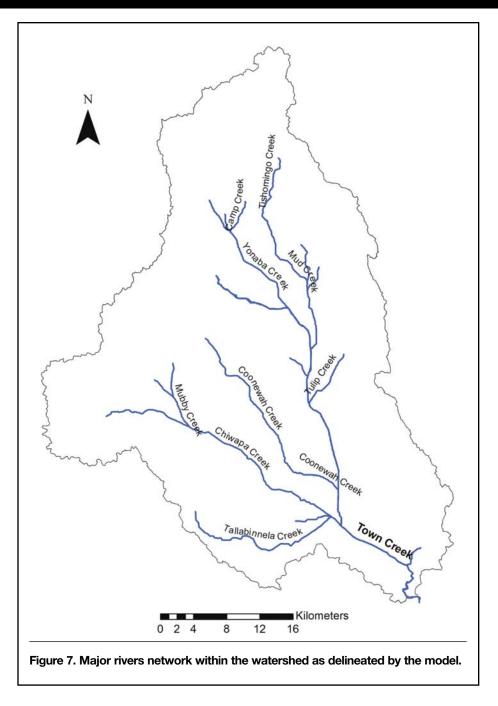
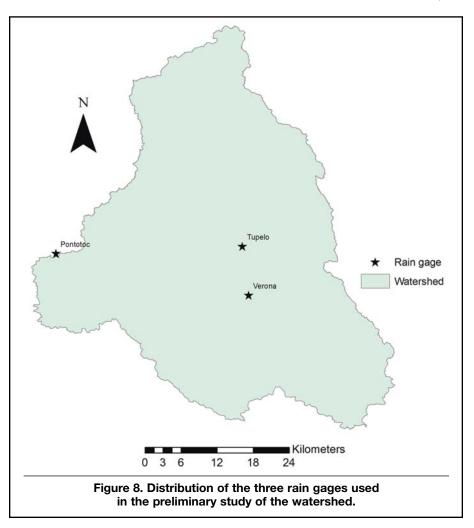

USGS Gage Station Location

Table 4. Name and coordinates of the USGS gage station in the watershed.				
Name	Latitude	Longitude		
Nettleton (USGS 02436500)	34°03'33"	88°37'41"		


8 Town Creek Watershed Assessment: Preliminary Report

SLOPE

The SWAT model classified slopes within the watershed (Figure 6) and delineated the stream network (Figure 7).


MAJOR RIVER NETWORK

RAIN GAGE

Rain Gage Stations

This study used weather data from three rain gage stations (Figure 8, Table 6), and watershed subbasins utilized weather data based on the closest available station (Table 5).

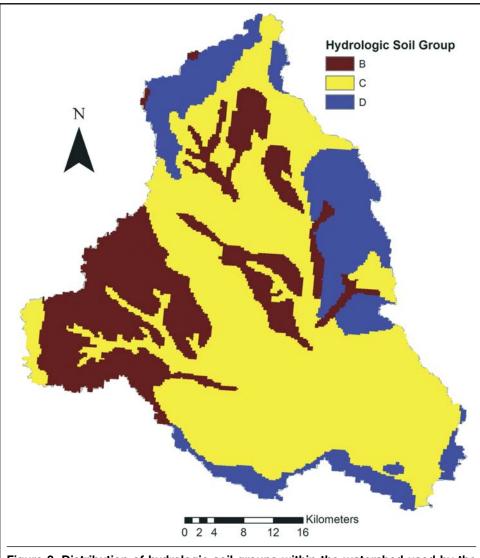
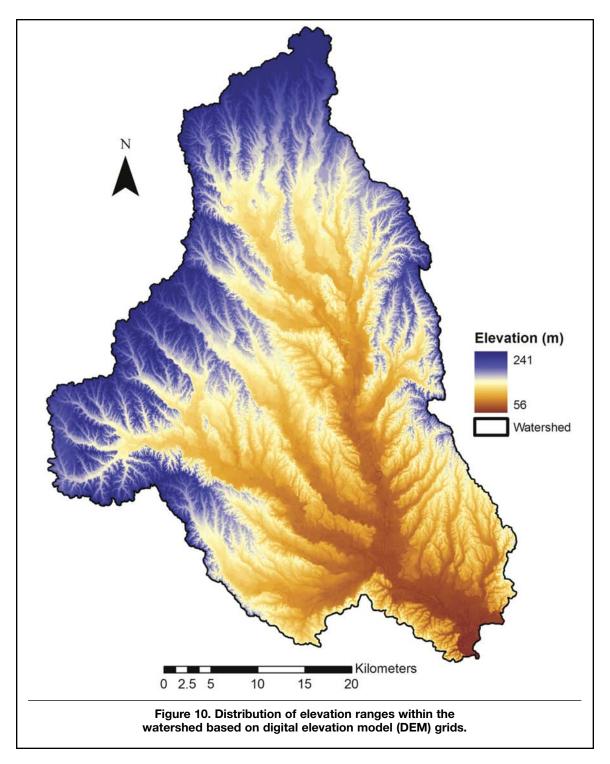
Rain Gages by Subbasin

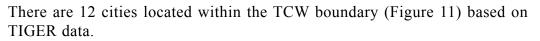
Subbasin	Station	Subbasin	Station	Subbasin	Station
1	Tupelo	12	Tupelo	23	Verona
2	Tupelo	13	Tupelo	24	Verona
3	Tupelo	14	Tupelo	25	Verona
4	Tupelo	15	Pontotoc	26	Verona
5	Tupelo	16	Verona	27	Verona
6	Tupelo	17	Tupelo	28	Verona
7	Tupelo	18	Tupelo	29	Verona
8	Tupelo	19	Pontotoc	30	Verona
9	Tupelo	20	Verona	31	Verona
10	Tupelo	21	Verona		
11	Tupelo	22	Tupelo		

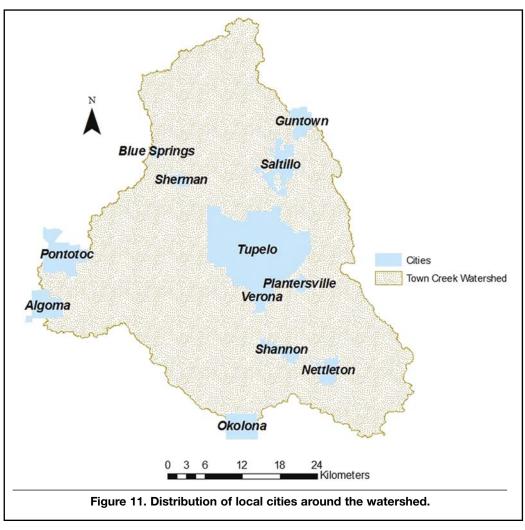
	Table 6. Coordinates and elevations of the rain gage locations used by the model.					
Name	Elevation (m) Latitude Longitude					
Pontotoc Tupelo Verona	123.4 79.2 99.1	34.13° 34.23° 34.20°	-89.00° -88.70° -88.72°			

HYDROLOGIC SOIL GROUP

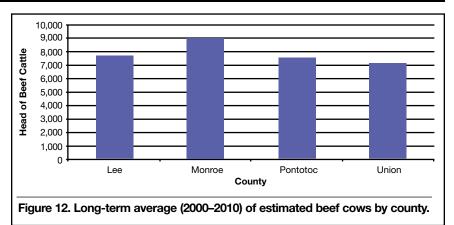
The SWAT-model-generated hydrologic soil groups showed that the TCW is dominated by Group C soils (Figure 9).


Figure 9. Distribution of hydrologic soil groups within the watershed used by the model. Note: Group B = moderately low runoff potential when very wet; Group C = moderately high runoff potential when very wet; and Group D = high runoff potential when very wet.


ELEVATION

The SWAT model delineated the watershed boundary using digital elevation model data and determined that the TCW elevation ranges from 56–241 meters (Figure 10).


CITIES

BEEF Cows

The four major counties comprising the TCW are Lee, Monroe, Pontotoc, and Union. Figure 12 shows the long-term average number of beef cows (by head) for each county from 2000 to 2010 (USDA/NASS, 2011).

14 Town Creek Watershed Assessment: Preliminary Report

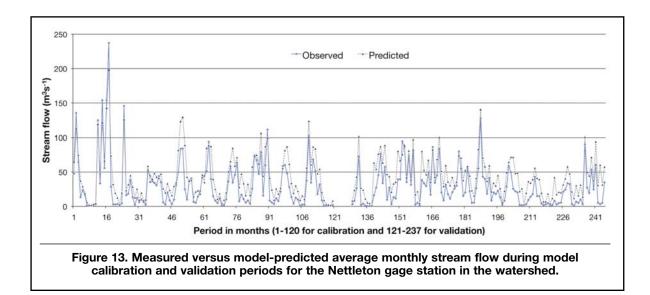

POPULATION BY COUNTY

Table 7. Estimated populations of the counties.1				
County	Population	County	Population	
Lee	76,000	Pontotoc	27,000	
Monroe	38,000	Union	25,000	
¹ Polidata, 2002.				

PRELIMINARY RESULTS

This research evaluated spatially and temporally variable hydrologic responses of the TCW using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated from January 1990 to December 1999 and validated from January 2000 to September 2009 using one USGS gage station's monthly measured stream flow data. The preliminary results of the calibrated and validated SWAT model determined reasonable performance for mean monthly stream flow prediction (Table 8 and Figure 13). The use of field-measured data may improve model efficiency. Crop yield data in addition to soil samples can be used for comparison and accuracy. The preliminary results of the SWAT model demonstrated spatial distribution of the highest crop yields from each subbasin, which helps to identify important subbasins in the watershed.

Table 8. Model efficiency during stream flow calibration and validation period.						
Station	Calibration period		Validation period		d	
	R ²	E	Slope	R ²	E	Slope
Nettleton	0.84	0.78	0.85	0.83	0.38	0.94

DISCUSSION

Based on SWAT simulation results, the water yields from the watershed subbasins were spatially and temporally variable, which was dependent on the topography, land-use conditions, and weather conditions of the watershed. This study helps watershed managers to prioritize areas in the watershed and also identify areas where possible nonpoint-source pollution due to agricultural practices could be the highest.

ACKNOWLEDGMENTS

This material is based upon work performed through the Sustainable Energy Research Center at Mississippi State University and is supported by the Department of Energy under Award Number DE-FG3606GO86025; Micro CHP and Bio-fuel Center; and Special Research Initiatives (SRI) and the Mississippi Agricultural and Forestry Experiment Station (MAFES). We also acknowledge the input of faculty members Tom Cathcart, Filip To, Fei Yu, and Dennis Rowe to improve the quality of this report.

References

- Mississippi Department of Environmental Quality (MDEQ). 2009. Nutrient Total Maximum Daily Load Report for Town Creek. MDEQ. Available at http://www.deq.state.ms.us/MDEQ.nsf/page/TWB_tombigbeestatrep?OpenDocument. Accessed on April 4, 2011.
- Natural Resources Conservation Service (NRCS). 2011. Mississippi Conservation Security Program (CSP). Available at http://www.ms.nrcs.usda.gov/-programs/MissCSP.html. Accessed April 26, 2011.
- Politidata Demographis and Political Guides. 2002. Mississippi, County Population: Politidata County Abbreviation and 2000 Total Population (in thousands). Politidata. Available at http://www.polidata.org/pub/reports/MSrpopba.pdf. Accessed on February 14, 2011.
- Ramirez-Avila, J.J., Langendoen, E.J., Mcanally, W.H., and Ortega-Achury, S.L. 2010. A sediment budget for Town Creek watershed: Suspended sediment transport analysis. Mississippi Water Resources Research Conference Proceedings.

- Tagert, M.L. 2006. Ph.D. dissertation. Water quality, modeling, and land use investigations in the Upper Pearl River basin of east-central Mississippi. Department of Plant and Soil Sciences, Mississippi State University, Starkville, Mississippi.
- U.S. Department of Agriculture, National Agricultural Statistics Service (USDA/NASS). 2011. Mississippi County Data- Livestock. United States Department of Agriculture (USDA). Available at http://www.nass.usda.gov/-Statistics_by_State/Mississippi/Publications/County_Estim ates/index.asp. Accessed on March 25, 2011.
- U.S. Environmental Protection Agency (US EPA). 2007. Clean Water Act 1972. Available at http://www.epa.gov/compliance/civil/cwa/index.html. Accessed on August 26, 2010.
- U.S. Environmental Protection Agency (US EPA). 2006. Waterbody Report for Town Creek. Available at: http://oaspub.epa.gov/tmdl/attains_waterbody.control?p_li st_id=MS013TE&p_cycle=2006&p_state=MS&p_report_typ e=T. Accessed on: 3/26/2011.

Printed on Recycled Paper

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the Mississippi Agricultural and Forestry Experiment Station and does not imply its approval to the exclusion of other products that also may be suitable.

Discrimination based upon race, color, religion, sex, national origin, age, disability, or veteran's status is a violation of federal and state law and MSU policy and will not be tolerated. Discrimination based upon sexual orientation or group affiliation is a violation of MSU policy and will not be tolerated.